論文の概要: Naming Practices of Pre-Trained Models in Hugging Face
- arxiv url: http://arxiv.org/abs/2310.01642v2
- Date: Thu, 28 Mar 2024 20:12:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 20:36:47.817131
- Title: Naming Practices of Pre-Trained Models in Hugging Face
- Title(参考訳): ジャグリング面におけるプレトレーニングモデルの命名実践
- Authors: Wenxin Jiang, Chingwo Cheung, Mingyu Kim, Heesoo Kim, George K. Thiruvathukal, James C. Davis,
- Abstract要約: PTM(Pre-Trained Models)は、コンピュータシステムにおいて、デプロイ前に品質や性能に適応するために使用される。
エンジニアはデプロイメント前に品質やパフォーマンスに適応する。
以前の調査では、モデル名は必ずしも適切に選択されている訳ではなく、時に誤っている、と報告されていた。
本稿では,Hugging Face PTMレジストリにおいて,PTM命名の実践に関する実証的研究を行った。
- 参考スコア(独自算出の注目度): 4.956536094440504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As innovation in deep learning continues, many engineers seek to adopt Pre-Trained Models (PTMs) as components in computer systems. Researchers publish PTMs, which engineers adapt for quality or performance prior to deployment. PTM authors should choose appropriate names for their PTMs, which would facilitate model discovery and reuse. However, prior research has reported that model names are not always well chosen - and are sometimes erroneous. The naming for PTM packages has not been systematically studied. In this paper, we frame and conduct the first empirical investigation of PTM naming practices in the Hugging Face PTM registry. We initiated our study with a survey of 108 Hugging Face users to understand the practices in PTM naming. From our survey analysis, we highlight discrepancies from traditional software package naming, and present findings on naming practices. Our findings indicate there is a great mismatch between engineers' preferences and practical practices of PTM naming. We also present practices on detecting naming anomalies and introduce a novel automated DNN ARchitecture Assessment technique (DARA), capable of detecting PTM naming anomalies. We envision future works on leveraging meta-features of PTMs to improve model reuse and trustworthiness.
- Abstract(参考訳): ディープラーニングのイノベーションが続くにつれて、多くのエンジニアが、コンピュータシステムのコンポーネントとして事前学習モデル(PTM)を採用しようとしている。
研究者は、デプロイ前に品質やパフォーマンスに適応するPTMを公開している。
PTMの著者は、モデル発見と再利用を容易にするPTMの適切な名前を選択する必要がある。
しかしながら、以前の研究では、モデル名は必ずしも適切に選択されているわけではないと報告されている。
PTMパッケージの命名は体系的に研究されていない。
本稿では,Hugging Face PTMレジストリにおいて,PTM命名の実践に関する実証的研究を行った。
筆者らは, PTM命名における実践を理解するために, 108人のHugging Faceユーザを対象に調査を開始した。
本調査から,従来のソフトウェアパッケージの命名と相違点に注目し,命名の実践について報告する。
以上の結果から,技術者の好みと PTM 命名の実践との間には大きなミスマッチがあることが示唆された。
我々はまた、命名異常を検出するためのプラクティスを提示し、PTM命名異常を検出することができる新しいDNNARchitecture Assessment Technique (DARA)を導入する。
PTMのメタ機能を活用したモデル再利用と信頼性の向上に向けた今後の研究を期待する。
関連論文リスト
- Towards a Classification of Open-Source ML Models and Datasets for Software Engineering [52.257764273141184]
オープンソースの事前訓練モデル(PTM)とデータセットは、さまざまな機械学習(ML)タスクに広範なリソースを提供する。
これらのリソースには、ソフトウェア工学(SE)のニーズに合わせた分類がない。
我々は、人気のあるオープンソースのMLリポジトリであるHugging Face (HF)上で、SE指向の分類をPTMとデータセットに適用し、時間とともにPTMの進化を分析する。
論文 参考訳(メタデータ) (2024-11-14T18:52:05Z) - Automated categorization of pre-trained models for software engineering: A case study with a Hugging Face dataset [9.218130273952383]
ソフトウェアエンジニアリング活動は、事前訓練されたモデル(PTM)の出現によって革新した。
Hugging Face (HF)プラットフォームは、いくつかのモデルを収集、保存、キュレーションすることで、PTMの使用を単純化する。
本稿では,SEタスクに対するPTMの自動分類を実現するためのアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-21T20:26:17Z) - PeaTMOSS: Mining Pre-Trained Models in Open-Source Software [6.243303627949341]
PeaTMOSSデータセットを提示する。 オープンソースソフトウェアにおける事前学習モデル。
PeaTMOSSには3つの部分がある: スナップショットは281,638 PTM、 (2) PTMを使用するオープンソースソフトウェアリポジトリ27,270、(3) PTMとそれを使用するプロジェクトの間のマッピング。
論文 参考訳(メタデータ) (2023-10-05T15:58:45Z) - ZhiJian: A Unifying and Rapidly Deployable Toolbox for Pre-trained Model
Reuse [59.500060790983994]
本稿では、PyTorchバックエンドを利用して、モデル再利用のための包括的でユーザフレンドリなツールボックスであるZhiJianを紹介する。
ZhiJianは、PTMによるターゲットアーキテクチャ構築、PTMによるターゲットモデルチューニング、およびPTMに基づく推論を含む、モデル再利用に関するさまざまな視点を統一する新しいパラダイムを提示している。
論文 参考訳(メタデータ) (2023-08-17T19:12:13Z) - Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need [84.3507610522086]
クラスインクリメンタルラーニング(Class-incremental Learning, CIL)は、古いクラスを忘れずに新しいクラスに適応することを目的としている。
近年の事前訓練は大きな進歩を遂げており、CILには膨大な事前訓練モデル(PTM)が利用できるようになった。
CILの中核となる要素は、モデル更新の適応性と知識伝達の一般化性である。
論文 参考訳(メタデータ) (2023-03-13T17:59:02Z) - An Empirical Study of Pre-Trained Model Reuse in the Hugging Face Deep
Learning Model Registry [2.1346819928536687]
機械学習エンジニアが大規模事前学習モデル(PTM)の再利用を開始
私たちは、最も人気のあるPTMエコシステムであるHugging Faceの実践者12人にインタビューして、PTM再利用のプラクティスと課題を学びました。
PTM再利用の3つの課題は、属性の欠如、クレームと実際のパフォーマンスの相違、モデルリスクである。
論文 参考訳(メタデータ) (2023-03-05T02:28:15Z) - Ranking and Tuning Pre-trained Models: A New Paradigm of Exploiting
Model Hubs [136.4492678691406]
本稿では,事前学習したモデルのランク付けとチューニングにより,モデルハブを利用する新しいパラダイムを提案する。
最高のランク付けされたPTMは、モデルのアーキテクチャを好まない場合は、微調整とデプロイが可能です。
チューニング部は、専用メソッドを超越した、複数 PTM チューニングのための新しい手法を導入する。
論文 参考訳(メタデータ) (2021-10-20T12:59:23Z) - Pre-Trained Models: Past, Present and Future [126.21572378910746]
大規模事前訓練モデル(PTM)は近年大きな成功を収め、人工知能(AI)分野におけるマイルストーンとなった。
知識を巨大なパラメータに格納し、特定のタスクを微調整することで、巨大なパラメータに暗黙的にエンコードされた豊富な知識は、さまざまな下流タスクの恩恵を受けることができる。
AIコミュニティが、モデルをスクラッチから学習するのではなく、下流タスクのバックボーンとしてPTMを採用することは、今、コンセンサスになっている。
論文 参考訳(メタデータ) (2021-06-14T02:40:32Z) - Evaluating Pre-Trained Models for User Feedback Analysis in Software
Engineering: A Study on Classification of App-Reviews [2.66512000865131]
アプリレビュー分類のための事前学習型ニューラルネットワークモデル(PTM)の精度と時間効率について検討した。
複数の設定でPTMを評価するために,異なる研究をセットアップした。
いずれの場合も、MicroとMacro Precision、Recall、F1スコアが使用されます。
論文 参考訳(メタデータ) (2021-04-12T23:23:45Z) - Pre-trained Models for Natural Language Processing: A Survey [75.95500552357429]
事前学習モデル(PTM)の出現は、自然言語処理(NLP)を新しい時代にもたらした。
この調査は、様々なNLPタスクに対するPTMの理解、利用、開発のためのハンズオンガイドになることを目的としている。
論文 参考訳(メタデータ) (2020-03-18T15:22:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。