論文の概要: Automated categorization of pre-trained models for software engineering: A case study with a Hugging Face dataset
- arxiv url: http://arxiv.org/abs/2405.13185v1
- Date: Tue, 21 May 2024 20:26:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 02:03:26.409411
- Title: Automated categorization of pre-trained models for software engineering: A case study with a Hugging Face dataset
- Title(参考訳): ソフトウェアエンジニアリングのための事前訓練モデルの自動分類:Hugging Faceデータセットを用いたケーススタディ
- Authors: Claudio Di Sipio, Riccardo Rubei, Juri Di Rocco, Davide Di Ruscio, Phuong T. Nguyen,
- Abstract要約: ソフトウェアエンジニアリング活動は、事前訓練されたモデル(PTM)の出現によって革新した。
Hugging Face (HF)プラットフォームは、いくつかのモデルを収集、保存、キュレーションすることで、PTMの使用を単純化する。
本稿では,SEタスクに対するPTMの自動分類を実現するためのアプローチを提案する。
- 参考スコア(独自算出の注目度): 9.218130273952383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Software engineering (SE) activities have been revolutionized by the advent of pre-trained models (PTMs), defined as large machine learning (ML) models that can be fine-tuned to perform specific SE tasks. However, users with limited expertise may need help to select the appropriate model for their current task. To tackle the issue, the Hugging Face (HF) platform simplifies the use of PTMs by collecting, storing, and curating several models. Nevertheless, the platform currently lacks a comprehensive categorization of PTMs designed specifically for SE, i.e., the existing tags are more suited to generic ML categories. This paper introduces an approach to address this gap by enabling the automatic classification of PTMs for SE tasks. First, we utilize a public dump of HF to extract PTMs information, including model documentation and associated tags. Then, we employ a semi-automated method to identify SE tasks and their corresponding PTMs from existing literature. The approach involves creating an initial mapping between HF tags and specific SE tasks, using a similarity-based strategy to identify PTMs with relevant tags. The evaluation shows that model cards are informative enough to classify PTMs considering the pipeline tag. Moreover, we provide a mapping between SE tasks and stored PTMs by relying on model names.
- Abstract(参考訳): ソフトウェアエンジニアリング(SE)の活動は、特定のSEタスクを実行するための微調整が可能な大規模機械学習(ML)モデルとして定義された、事前訓練されたモデル(PTM)の出現によって革新された。
しかし、限られた専門知識を持つユーザは、現在のタスクに適したモデルを選択するのに役立ちます。
この問題に対処するため、Hugging Face (HF)プラットフォームは、複数のモデルを収集、保存、キュレーションすることで、PTMの使用を単純化する。
それにもかかわらず、プラットフォームはSE用に特別に設計されたPMMの包括的な分類を欠いている。
本稿では,SEタスクの PTM の自動分類を可能にすることによって,このギャップに対処する手法を提案する。
まず、HFのパブリックダンプを使用して、モデルドキュメンテーションや関連するタグを含むPTM情報を抽出する。
そこで本研究では,既存の文献からSEタスクとその対応するPTMを半自動で識別する手法を提案する。
このアプローチでは、類似性ベースの戦略を使用して、HFタグと特定のSEタスクの最初のマッピングを作成し、関連するタグでPTMを識別する。
評価の結果,モデルカードはパイプラインタグを考慮したPTMを分類するのに十分な情報であることがわかった。
さらに、モデル名に依存することで、SEタスクとストアドPTMのマッピングを提供する。
関連論文リスト
- Towards a Classification of Open-Source ML Models and Datasets for Software Engineering [52.257764273141184]
オープンソースの事前訓練モデル(PTM)とデータセットは、さまざまな機械学習(ML)タスクに広範なリソースを提供する。
これらのリソースには、ソフトウェア工学(SE)のニーズに合わせた分類がない。
我々は、人気のあるオープンソースのMLリポジトリであるHugging Face (HF)上で、SE指向の分類をPTMとデータセットに適用し、時間とともにPTMの進化を分析する。
論文 参考訳(メタデータ) (2024-11-14T18:52:05Z) - PeaTMOSS: A Dataset and Initial Analysis of Pre-Trained Models in
Open-Source Software [6.243303627949341]
本稿では,281,638PTMのメタデータと全PTMの詳細なスナップショットを含むPeaTMOSSデータセットを提案する。
データセットには15,129のダウンストリームGitHubリポジトリから2,530のPTMへの44,337のマッピングが含まれている。
我々の分析は、PTMサプライチェーンに関する最初の要約統計を提供し、PTM開発の動向とPTMパッケージドキュメンテーションの共通の欠点を示している。
論文 参考訳(メタデータ) (2024-02-01T15:55:50Z) - TAT-LLM: A Specialized Language Model for Discrete Reasoning over Tabular and Textual Data [73.29220562541204]
我々は,言語モデル(LLM)の驚くべきパワーを活用して課題を解決することを検討する。
LLaMA2を微調整し,既存のエキスパートアノテートデータセットから自動生成したトレーニングデータを用いてTAT-LLM言語モデルを開発する。
論文 参考訳(メタデータ) (2024-01-24T04:28:50Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
クリックスルーレート(CTR)予測は、パーソナライズされたオンラインサービスにおいてコア機能モジュールとして機能する。
CTR予測のための従来のIDベースのモデルは、表形式の1ホットエンコードされたID特徴を入力として取る。
事前訓練された言語モデル(PLM)は、テキストのモダリティの文を入力として取る別のパラダイムを生み出した。
本稿では,CTR予測のためのIDベースモデルと事前学習言語モデル(FLIP)間の細粒度特徴レベルのアライメントを提案する。
論文 参考訳(メタデータ) (2023-10-30T11:25:03Z) - Naming Practices of Pre-Trained Models in Hugging Face [4.956536094440504]
PTM(Pre-Trained Models)は、コンピュータシステムにおいて、デプロイ前に品質や性能に適応するために使用される。
エンジニアはデプロイメント前に品質やパフォーマンスに適応する。
以前の調査では、モデル名は必ずしも適切に選択されている訳ではなく、時に誤っている、と報告されていた。
本稿では,Hugging Face PTMレジストリにおいて,PTM命名の実践に関する実証的研究を行った。
論文 参考訳(メタデータ) (2023-10-02T21:13:32Z) - Revisiting Class-Incremental Learning with Pre-Trained Models: Generalizability and Adaptivity are All You Need [84.3507610522086]
クラスインクリメンタルラーニング(Class-incremental Learning, CIL)は、古いクラスを忘れずに新しいクラスに適応することを目的としている。
近年の事前訓練は大きな進歩を遂げており、CILには膨大な事前訓練モデル(PTM)が利用できるようになった。
CILの中核となる要素は、モデル更新の適応性と知識伝達の一般化性である。
論文 参考訳(メタデータ) (2023-03-13T17:59:02Z) - A Deep Model for Partial Multi-Label Image Classification with Curriculum Based Disambiguation [42.0958430465578]
部分多重ラベル(PML)画像分類問題について検討する。
既存のPMLメソッドは通常、ノイズの多いラベルをフィルタリングするための曖昧な戦略を設計する。
本稿では,PMLの表現能力と識別能力を高めるための深層モデルを提案する。
論文 参考訳(メタデータ) (2022-07-06T02:49:02Z) - Black-Box Tuning for Language-Model-as-a-Service [85.2210372920386]
この研究は、デリバティブフリーアルゴリズムによってPTMを最適化するBlack-Box Tuningを提案する。
特に,PTM推論APIを反復的に呼び出すことで,入力テキストに既定の連続的なプロンプトを最適化するためにCMA-ESを起動する。
実験の結果,数個のラベル付きサンプル上でのRoBERTaを用いたブラックボックスチューニングは,手動のプロンプトやGPT-3のテキスト内学習に優れるだけでなく,勾配に基づく学習よりも優れていた。
論文 参考訳(メタデータ) (2022-01-10T18:17:05Z) - Ranking and Tuning Pre-trained Models: A New Paradigm of Exploiting
Model Hubs [136.4492678691406]
本稿では,事前学習したモデルのランク付けとチューニングにより,モデルハブを利用する新しいパラダイムを提案する。
最高のランク付けされたPTMは、モデルのアーキテクチャを好まない場合は、微調整とデプロイが可能です。
チューニング部は、専用メソッドを超越した、複数 PTM チューニングのための新しい手法を導入する。
論文 参考訳(メタデータ) (2021-10-20T12:59:23Z) - Evaluating Pre-Trained Models for User Feedback Analysis in Software
Engineering: A Study on Classification of App-Reviews [2.66512000865131]
アプリレビュー分類のための事前学習型ニューラルネットワークモデル(PTM)の精度と時間効率について検討した。
複数の設定でPTMを評価するために,異なる研究をセットアップした。
いずれの場合も、MicroとMacro Precision、Recall、F1スコアが使用されます。
論文 参考訳(メタデータ) (2021-04-12T23:23:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。