DANI: Fast Diffusion Aware Network Inference with Preserving Topological
Structure Property
- URL: http://arxiv.org/abs/2310.01696v1
- Date: Mon, 2 Oct 2023 23:23:00 GMT
- Title: DANI: Fast Diffusion Aware Network Inference with Preserving Topological
Structure Property
- Authors: Maryam Ramezani, Aryan Ahadinia, Erfan Farhadi, Hamid R. Rabiee
- Abstract summary: We propose a novel method called DANI to infer the underlying network while preserving its structural properties.
DANI has higher accuracy and lower run time while maintaining structural properties, including modular structure, degree distribution, connected components, density, and clustering coefficients.
- Score: 2.8948274245812327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The fast growth of social networks and their data access limitations in
recent years has led to increasing difficulty in obtaining the complete
topology of these networks. However, diffusion information over these networks
is available, and many algorithms have been proposed to infer the underlying
networks using this information. The previously proposed algorithms only focus
on inferring more links and ignore preserving the critical topological
characteristics of the underlying social networks. In this paper, we propose a
novel method called DANI to infer the underlying network while preserving its
structural properties. It is based on the Markov transition matrix derived from
time series cascades, as well as the node-node similarity that can be observed
in the cascade behavior from a structural point of view. In addition, the
presented method has linear time complexity (increases linearly with the number
of nodes, number of cascades, and square of the average length of cascades),
and its distributed version in the MapReduce framework is also scalable. We
applied the proposed approach to both real and synthetic networks. The
experimental results showed that DANI has higher accuracy and lower run time
while maintaining structural properties, including modular structure, degree
distribution, connected components, density, and clustering coefficients, than
well-known network inference methods.
Related papers
- Defining Neural Network Architecture through Polytope Structures of Dataset [53.512432492636236]
This paper defines upper and lower bounds for neural network widths, which are informed by the polytope structure of the dataset in question.
We develop an algorithm to investigate a converse situation where the polytope structure of a dataset can be inferred from its corresponding trained neural networks.
It is established that popular datasets such as MNIST, Fashion-MNIST, and CIFAR10 can be efficiently encapsulated using no more than two polytopes with a small number of faces.
arXiv Detail & Related papers (2024-02-04T08:57:42Z) - Learning Persistent Community Structures in Dynamic Networks via
Topological Data Analysis [2.615648035076649]
We propose a novel deep graph clustering framework with temporal consistency regularization on inter-community structures.
MFC is a matrix factorization-based deep graph clustering algorithm that preserves node embedding.
TopoReg is introduced to ensure the preservation of topological similarity between inter-community structures over time intervals.
arXiv Detail & Related papers (2024-01-06T11:29:19Z) - DyCSC: Modeling the Evolutionary Process of Dynamic Networks Based on
Cluster Structure [1.005130974691351]
We propose a novel temporal network embedding method named Dynamic Cluster Structure Constraint model (DyCSC)
DyCSC captures the evolution of temporal networks by imposing a temporal constraint on the tendency of the nodes in the network to a given number of clusters.
It consistently outperforms competing methods by significant margins in multiple temporal link prediction tasks.
arXiv Detail & Related papers (2022-10-23T10:23:08Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
Simplicial neural networks (SNN) have recently emerged as the newest direction in graph learning.
We present Block Simplicial Complex Neural Networks (BScNets) model for link prediction.
BScNets outperforms state-of-the-art models by a significant margin while maintaining low costs.
arXiv Detail & Related papers (2021-12-13T17:35:54Z) - Predicting Critical Nodes in Temporal Networks by Dynamic Graph
Convolutional Networks [1.213512753726579]
It is difficult to identify critical nodes because the network structure changes over time in temporal networks.
This paper proposes a novel and effective learning framework based on the combination of special GCNs and RNNs.
Experimental results on four real-world temporal networks demonstrate that the proposed method outperforms both traditional and deep learning benchmark methods.
arXiv Detail & Related papers (2021-06-19T04:16:18Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z) - Online Estimation and Community Detection of Network Point Processes for
Event Streams [12.211623200731788]
A common goal in network modeling is to uncover the latent community structure present among nodes.
We propose a fast online variational inference algorithm for estimating the latent structure underlying dynamic event arrivals on a network.
We demonstrate that online inference can obtain comparable performance, in terms of community recovery, to non-online variants.
arXiv Detail & Related papers (2020-09-03T15:39:55Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - TempNodeEmb:Temporal Node Embedding considering temporal edge influence
matrix [0.8941624592392746]
Predicting future links among the nodes in temporal networks reveals an important aspect of the evolution of temporal networks.
Some approaches consider a simplified representation of temporal networks but in high-dimensional and generally sparse matrices.
We propose a new node embedding technique which exploits the evolving nature of the networks considering a simple three-layer graph neural network at each time step.
arXiv Detail & Related papers (2020-08-16T15:39:07Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.