Linearization of ReLU Activation Function for Neural Network-Embedded
Optimization:Optimal Day-Ahead Energy Scheduling
- URL: http://arxiv.org/abs/2310.01758v1
- Date: Tue, 3 Oct 2023 02:47:38 GMT
- Title: Linearization of ReLU Activation Function for Neural Network-Embedded
Optimization:Optimal Day-Ahead Energy Scheduling
- Authors: Cunzhi Zhao and Xingpeng Li
- Abstract summary: In some applications such as battery degradation neural network-based microgrid day-ahead energy scheduling, the input features of the trained learning model are variables to be solved in optimization models.
The use of nonlinear activation functions in the neural network will make such problems extremely hard to solve if not unsolvable.
This paper investigated different methods for linearizing the nonlinear activation functions with a particular focus on the widely used rectified linear unit (ReLU) function.
- Score: 0.2900810893770134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have been widely applied in the power system area. They can
be used for better predicting input information and modeling system performance
with increased accuracy. In some applications such as battery degradation
neural network-based microgrid day-ahead energy scheduling, the input features
of the trained learning model are variables to be solved in optimization models
that enforce limits on the output of the same learning model. This will create
a neural network-embedded optimization problem; the use of nonlinear activation
functions in the neural network will make such problems extremely hard to solve
if not unsolvable. To address this emerging challenge, this paper investigated
different methods for linearizing the nonlinear activation functions with a
particular focus on the widely used rectified linear unit (ReLU) function. Four
linearization methods tailored for the ReLU activation function are developed,
analyzed and compared in this paper. Each method employs a set of linear
constraints to replace the ReLU function, effectively linearizing the
optimization problem, which can overcome the computational challenges
associated with the nonlinearity of the neural network model. These proposed
linearization methods provide valuable tools for effectively solving
optimization problems that integrate neural network models with ReLU activation
functions.
Related papers
- A Novel Explanation Against Linear Neural Networks [1.223779595809275]
Linear Regression and neural networks are widely used to model data.
We show that neural networks without activation functions, or linear neural networks, actually reduce both training and testing performance.
We prove this hypothesis through an analysis of the optimization of an LNN and rigorous testing comparing the performance between both LNNs and linear regression on noisy datasets.
arXiv Detail & Related papers (2023-12-30T09:44:51Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Physics Informed Piecewise Linear Neural Networks for Process
Optimization [0.0]
It is proposed to upgrade piece-wise linear neural network models with physics informed knowledge for optimization problems with neural network models embedded.
For all cases, physics-informed trained neural network based optimal results are closer to global optimality.
arXiv Detail & Related papers (2023-02-02T10:14:54Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
We study optimization problems where the objective function is modeled through feedforward neural networks with rectified linear unit activation.
We present a mixed-integer linear program based on existing popular big-$M$ formulations for optimizing over a single neural network.
arXiv Detail & Related papers (2021-12-13T20:50:54Z) - Unsupervised Reservoir Computing for Solving Ordinary Differential
Equations [1.6371837018687636]
unsupervised reservoir computing (RC), an echo-state recurrent neural network capable of discovering approximate solutions that satisfy ordinary differential equations (ODEs)
We use Bayesian optimization to efficiently discover optimal sets in a high-dimensional hyper- parameter space and numerically show that one set is robust and can be used to solve an ODE for different initial conditions and time ranges.
arXiv Detail & Related papers (2021-08-25T18:16:42Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - CDiNN -Convex Difference Neural Networks [0.8122270502556374]
Neural networks with ReLU activation function have been shown to be universal function approximators learn function mapping as non-smooth functions.
New neural network architecture called ICNNs learn the output as a convex input.
arXiv Detail & Related papers (2021-03-31T17:31:16Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.