論文の概要: Backdiff: a diffusion model for generalized transferable protein
backmapping
- arxiv url: http://arxiv.org/abs/2310.01768v1
- Date: Tue, 3 Oct 2023 03:32:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 17:45:17.213188
- Title: Backdiff: a diffusion model for generalized transferable protein
backmapping
- Title(参考訳): backdiff: 一般化された転写性タンパク質バックマップのための拡散モデル
- Authors: Yikai Liu, Ming Chen, Guang Lin
- Abstract要約: BackDiffは、タンパク質のバックマッピング問題における一般化と信頼性を実現するために設計された新しい生成モデルである。
本手法は,エンド・ツー・エンドのトレーニングを容易にするとともに,リトレーニングを必要とせず,異なるタンパク質および多様なCGモデルを効率的にサンプリングすることができる。
- 参考スコア(独自算出の注目度): 9.815461018844523
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coarse-grained (CG) models play a crucial role in the study of protein
structures, protein thermodynamic properties, and protein conformation
dynamics. Due to the information loss in the coarse-graining process,
backmapping from CG to all-atom configurations is essential in many protein
design and drug discovery applications when detailed atomic representations are
needed for in-depth studies. Despite recent progress in data-driven backmapping
approaches, devising a backmapping method that can be universally applied
across various CG models and proteins remains unresolved. In this work, we
propose BackDiff, a new generative model designed to achieve generalization and
reliability in the protein backmapping problem. BackDiff leverages the
conditional score-based diffusion model with geometric representations. Since
different CG models can contain different coarse-grained sites which include
selected atoms (CG atoms) and simple CG auxiliary functions of atomistic
coordinates (CG auxiliary variables), we design a self-supervised training
framework to adapt to different CG atoms, and constrain the diffusion sampling
paths with arbitrary CG auxiliary variables as conditions. Our method
facilitates end-to-end training and allows efficient sampling across different
proteins and diverse CG models without the need for retraining. Comprehensive
experiments over multiple popular CG models demonstrate BackDiff's superior
performance to existing state-of-the-art approaches, and generalization and
flexibility that these approaches cannot achieve. A pretrained BackDiff model
can offer a convenient yet reliable plug-and-play solution for protein
researchers, enabling them to investigate further from their own CG models.
- Abstract(参考訳): 粗粒モデル(CG)は、タンパク質構造、タンパク質の熱力学特性、タンパク質配座ダイナミクスの研究において重要な役割を果たす。
粗粒化過程における情報損失のため、詳細な原子表現が必要な場合、CGから全原子構成へのバックマッピングは多くのタンパク質設計や創薬への応用において不可欠である。
データ駆動型バックマッピング手法の最近の進歩にもかかわらず、様々なCGモデルやタンパク質に普遍的に適用可能なバックマッピング法の開発は未解決のままである。
本研究では,タンパク質のバックマッピング問題における一般化と信頼性を実現するための新しい生成モデルであるBackDiffを提案する。
バックディフは幾何表現を持つ条件付きスコアベースの拡散モデルを利用する。
異なるCGモデルは、選択された原子(CG原子)と単純なCG補助関数(CG補助変数)を含む粗粒の異なる部位を含むことができるので、異なるCG原子に適応するための自己教師付きトレーニングフレームワークを設計し、任意のCG補助変数で拡散サンプリング経路を制約する。
本手法は,エンド・ツー・エンドのトレーニングを容易にするとともに,リトレーニングを必要とせず,異なるタンパク質および多様なCGモデルを効率的にサンプリングすることができる。
複数の一般的なCGモデルに対する総合的な実験は、バックディフが既存の最先端アプローチよりも優れた性能を示し、これらのアプローチが達成できない一般化と柔軟性を示している。
事前訓練されたBackDiffモデルは、タンパク質研究者にとって便利な、信頼性の高いプラグイン・アンド・プレイソリューションを提供する。
関連論文リスト
- Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
本稿では,確率論的推論の課題として,事前学習したMDMを操る作業を行う新しいフレームワークであるDDPPを紹介する。
私たちのフレームワークは、3つの新しい目標のファミリーにつながります。
Wet-lab Validation(ウェット・ラブ・バリデーション)を用いて,報酬最適化タンパク質配列の過渡的発現を観察する。
論文 参考訳(メタデータ) (2024-10-10T17:18:30Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
本研究では,様々な生成手法から偽画像を検出することを目的とした,一般化可能な合成画像検出の課題について検討する。
本稿では,FatFormerという新しいフォージェリー適応トランスフォーマー手法を提案する。
提案手法は, 平均98%の精度でGANを観測し, 95%の精度で拡散モデルを解析した。
論文 参考訳(メタデータ) (2023-12-27T17:36:32Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Navigating protein landscapes with a machine-learned transferable
coarse-grained model [29.252004942896875]
同様の予測性能を持つ粗粒度(CG)モデルは、長年にわたる課題である。
ケミカルトランスポータビリティを持つボトムアップCG力場を開発し,新しい配列の分子動力学に利用することができる。
本モデルでは, 折り畳み構造, 中間体, メタスタブル折り畳み型および折り畳み型流域, 内在的に不規則なタンパク質のゆらぎの予測に成功している。
論文 参考訳(メタデータ) (2023-10-27T17:10:23Z) - DiAMoNDBack: Diffusion-denoising Autoregressive Model for
Non-Deterministic Backmapping of C{\alpha} Protein Traces [0.0]
DiAMoNDBack は非決定論的バックマッピングのための自己回帰デノナイジング拡散確率モデルである。
我々は、タンパク質データバンク(PDB)から65k以上の構造をトレーニングし、それをホールドアウトしたPDBテストセットにアプリケーションで検証する。
DiAMoNDBackは、フリーでオープンソースのPythonパッケージとして公開しています。
論文 参考訳(メタデータ) (2023-07-23T23:05:08Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Generative Pretrained Autoregressive Transformer Graph Neural Network
applied to the Analysis and Discovery of Novel Proteins [0.0]
本稿では,タンパク質モデリングにおける複雑な前方および逆問題を解決するために,フレキシブル言語モデルに基づくディープラーニング戦略を適用した。
本モデルを用いて, 二次構造含量(残量レベル, 全体含量), タンパク質溶解度, シークエンシングタスクの予測を行った。
追加タスクを追加することで、モデルが全体的なパフォーマンスを改善するために活用する創発的なシナジーが得られることが分かりました。
論文 参考訳(メタデータ) (2023-05-07T12:30:24Z) - Chemically Transferable Generative Backmapping of Coarse-Grained
Proteins [0.0]
粗粒化(CG)は、原子の集合を特異なビーズとしてシミュレートすることでタンパク質力学のシミュレーションを加速する。
バックマッピングは、失われた原子論的な詳細をCG表現から取り戻すという逆の操作である。
この研究は、CGタンパク質表現のための高速で、転送可能で、信頼性の高い生成バックマッピングツールを構築する。
論文 参考訳(メタデータ) (2023-03-02T20:51:57Z) - Latent Space Diffusion Models of Cryo-EM Structures [6.968705314671148]
我々は、CryoDRGNフレームワークにおいて、表現的で学習可能な拡散モデルをトレーニングする。
データ分布の正確なモデルを学習することにより、生成モデリング、サンプリング、分布解析のツールを解放する。
論文 参考訳(メタデータ) (2022-11-25T15:17:10Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
分子配座予測のための新しい生成モデルGeoDiffを提案する。
GeoDiffは、既存の最先端のアプローチよりも優れているか、あるいは同等であることを示す。
論文 参考訳(メタデータ) (2022-03-06T09:47:01Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。