論文の概要: Navigating protein landscapes with a machine-learned transferable
coarse-grained model
- arxiv url: http://arxiv.org/abs/2310.18278v1
- Date: Fri, 27 Oct 2023 17:10:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-30 12:56:57.770714
- Title: Navigating protein landscapes with a machine-learned transferable
coarse-grained model
- Title(参考訳): 機械学習型伝達性粗粒モデルによるタンパク質の探索
- Authors: Nicholas E. Charron, Felix Musil, Andrea Guljas, Yaoyi Chen, Klara
Bonneau, Aldo S. Pasos-Trejo, Jacopo Venturin, Daria Gusew, Iryna
Zaporozhets, Andreas Kr\"amer, Clark Templeton, Atharva Kelkar, Aleksander E.
P. Durumeric, Simon Olsson, Adri\`a P\'erez, Maciej Majewski, Brooke E.
Husic, Ankit Patel, Gianni De Fabritiis, Frank No\'e, Cecilia Clementi
- Abstract要約: 同様の予測性能を持つ粗粒度(CG)モデルは、長年にわたる課題である。
ケミカルトランスポータビリティを持つボトムアップCG力場を開発し,新しい配列の分子動力学に利用することができる。
本モデルでは, 折り畳み構造, 中間体, メタスタブル折り畳み型および折り畳み型流域, 内在的に不規則なタンパク質のゆらぎの予測に成功している。
- 参考スコア(独自算出の注目度): 29.252004942896875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The most popular and universally predictive protein simulation models employ
all-atom molecular dynamics (MD), but they come at extreme computational cost.
The development of a universal, computationally efficient coarse-grained (CG)
model with similar prediction performance has been a long-standing challenge.
By combining recent deep learning methods with a large and diverse training set
of all-atom protein simulations, we here develop a bottom-up CG force field
with chemical transferability, which can be used for extrapolative molecular
dynamics on new sequences not used during model parametrization. We demonstrate
that the model successfully predicts folded structures, intermediates,
metastable folded and unfolded basins, and the fluctuations of intrinsically
disordered proteins while it is several orders of magnitude faster than an
all-atom model. This showcases the feasibility of a universal and
computationally efficient machine-learned CG model for proteins.
- Abstract(参考訳): 最も一般的かつ普遍的に予測されるタンパク質シミュレーションモデルは全原子分子動力学(md)を用いるが、計算コストは極端である。
予測性能に類似した普遍的, 計算効率の良い粗粒度(CG)モデルの開発は, 長年にわたる課題である。
近年の深層学習法と多種多様な全原子タンパク質シミュレーションを組み合わせることで, モデルパラメトリゼーションで使用されていない新しい配列の分子動力学の補間に使用できる, 化学伝達性を備えたボトムアップCG力場を開発した。
本モデルでは, 折りたたみ構造, 中間体, 準安定な折り畳み盆地, および内在的に乱れたタンパク質のゆらぎを予測できるが, 全原子モデルよりも数桁高速である。
これは、汎用で計算効率の良いタンパク質のcgモデルの実現可能性を示す。
関連論文リスト
- Generative Modeling of Molecular Dynamics Trajectories [12.255021091552441]
データからMDの柔軟なマルチタスクサロゲートモデルを学ぶためのパラダイムとして,分子軌道の生成モデルを提案する。
このような生成モデルは,前方シミュレーションや遷移経路サンプリング,軌道上アップサンプリングといった多様なタスクに適応可能であることを示す。
論文 参考訳(メタデータ) (2024-09-26T13:02:28Z) - A Microstructure-based Graph Neural Network for Accelerating Multiscale
Simulations [0.0]
本稿では,この問題のマルチスケール性を維持するための代替的な代理モデル戦略を提案する。
我々は, 顕微鏡材料モデルを維持しながら, グラフニューラルネットワーク(GNN)を用いて, フルフィールドの顕微鏡歪みを予測した。
本研究では,サロゲートが複雑なマクロな応力-ひずみ経路を予測可能であることを示す。
論文 参考訳(メタデータ) (2024-02-20T15:54:24Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - Top-down machine learning of coarse-grained protein force-fields [2.1485350418225244]
我々の手法は、タンパク質を分子動力学でシミュレートし、その結果の軌道を利用してニューラルネットワーク電位を訓練することである。
注目すべきは、この方法はタンパク質のネイティブなコンフォメーションのみを必要とし、ラベル付きデータを必要としないことである。
マルコフ状態モデルを適用することで、シミュレーションされたタンパク質のネイティブな構造を粗い粒度のシミュレーションから予測することができる。
論文 参考訳(メタデータ) (2023-06-20T08:31:24Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Statistically Optimal Force Aggregation for Coarse-Graining Molecular
Dynamics [55.41644538483948]
粗粒(CG)モデルは、原子論的な分子動力学で可能な以上の大きな分子複合体をシミュレートする可能性がある。
CG力場を学習するための広く使われている方法論は、全原子分子動力学からCG表現への力のマッピングと、平均してCG力場とマッチングするものである。
我々は、全原子力のCG表現へのマッピングには柔軟性があり、最もよく使われるマッピング手法は統計的に非効率的であり、全原子シミュレーションにおける制約の存在においても、潜在的に誤りであることを示した。
論文 参考訳(メタデータ) (2023-02-14T14:35:39Z) - Two for One: Diffusion Models and Force Fields for Coarse-Grained
Molecular Dynamics [15.660348943139711]
我々は、スコアベース生成モデル、力場、分子動力学の接続を利用して、トレーニング中に力入力を必要とせずにCG力場を学習する。
従来よりも大幅に簡易化されたトレーニングセットアップを持つ一方で,本手法がいくつかの小~中規模のタンパク質シミュレーションの性能向上につながることを実証した。
論文 参考訳(メタデータ) (2023-02-01T17:09:46Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Embedded-physics machine learning for coarse-graining and collective
variable discovery without data [3.222802562733787]
基礎となる物理を一貫して組み込む新しい学習フレームワークを提案する。
原子間力場の形で利用可能な物理学を完全に組み込んだ逆クルバック・リーブラー分岐に基づく新しい目的を提案する。
本研究は,バイモーダルポテンシャルエネルギー関数とアラニンジペプチドに対するCVの予測能力および物理的意義の観点からアルゴリズムの進歩を実証する。
論文 参考訳(メタデータ) (2020-02-24T10:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。