STAMP: Differentiable Task and Motion Planning via Stein Variational Gradient Descent
- URL: http://arxiv.org/abs/2310.01775v4
- Date: Sun, 29 Sep 2024 04:43:45 GMT
- Title: STAMP: Differentiable Task and Motion Planning via Stein Variational Gradient Descent
- Authors: Yewon Lee, Andrew Z. Li, Philip Huang, Eric Heiden, Krishna Murthy Jatavallabhula, Fabian Damken, Kevin Smith, Derek Nowrouzezahrai, Fabio Ramos, Florian Shkurti,
- Abstract summary: Planning for sequential robotics tasks often requires integrated symbolic and geometric reasoning.
TAMP algorithms typically solve these problems by performing a tree search over high-level task sequences while checking for kinematic and dynamic feasibility.
We propose a novel approach to TAMP called Stein Task and Motion Planning (STAMP) that relaxes the hybrid optimization problem into a continuous domain.
- Score: 35.96763689715956
- License:
- Abstract: Planning for sequential robotics tasks often requires integrated symbolic and geometric reasoning. TAMP algorithms typically solve these problems by performing a tree search over high-level task sequences while checking for kinematic and dynamic feasibility. This can be inefficient because, typically, candidate task plans resulting from the tree search ignore geometric information. This often leads to motion planning failures that require expensive backtracking steps to find alternative task plans. We propose a novel approach to TAMP called Stein Task and Motion Planning (STAMP) that relaxes the hybrid optimization problem into a continuous domain. This allows us to leverage gradients from differentiable physics simulation to fully optimize discrete and continuous plan parameters for TAMP. In particular, we solve the optimization problem using a gradient-based variational inference algorithm called Stein Variational Gradient Descent. This allows us to find a distribution of solutions within a single optimization run. Furthermore, we use an off-the-shelf differentiable physics simulator that is parallelized on the GPU to run parallelized inference over diverse plan parameters. We demonstrate our method on a variety of problems and show that it can find multiple diverse plans in a single optimization run while also being significantly faster than existing approaches.
Related papers
- A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Parametric-Task MAP-Elites [3.499042782396682]
Parametric-Task MAP-Elites (PT-ME) is a new black-box algorithm for continuous multi-task optimization problems.
We show that PT-ME outperforms all baselines, including the deep reinforcement learning algorithm PPO on two parametric-task toy problems and a robotic problem in simulation.
arXiv Detail & Related papers (2024-02-02T10:04:29Z) - Numerical Methods for Convex Multistage Stochastic Optimization [86.45244607927732]
We focus on optimisation programming (SP), Optimal Control (SOC) and Decision Processes (MDP)
Recent progress in solving convex multistage Markov problems is based on cutting planes approximations of the cost-to-go functions of dynamic programming equations.
Cutting plane type methods can handle multistage problems with a large number of stages, but a relatively smaller number of state (decision) variables.
arXiv Detail & Related papers (2023-03-28T01:30:40Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
We present an efficient motion planning framework for simultaneously solving locomotion, grasping, and contact problems.
We demonstrate our proposed framework in the hardware experiments, showing that the multi-limbed robot is able to realize various motions including free-climbing at a slope angle 45deg with a much shorter planning time.
arXiv Detail & Related papers (2022-07-04T13:52:10Z) - Tensor Train for Global Optimization Problems in Robotics [6.702251803443858]
The convergence of many numerical optimization techniques is highly dependent on the initial guess given to the solver.
We propose a novel approach that utilizes methods to initialize existing optimization solvers near global optima.
We show that the proposed method can generate samples close to global optima and from multiple modes.
arXiv Detail & Related papers (2022-06-10T13:18:26Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Gradient-Based Mixed Planning with Discrete and Continuous Actions [34.885999774739055]
We propose a quadratic-based framework to simultaneously optimize continuous parameters and actions of candidate plans.
The framework is combined with a module to estimate the best plan candidate to transit initial state to the goal based on relaxation.
arXiv Detail & Related papers (2021-10-19T14:21:19Z) - Bypassing or flying above the obstacles? A novel multi-objective UAV
path planning problem [0.0]
This study proposes a novel integer programming model for a collision-free discrete drone path planning problem.
Considering the possibility of bypassing obstacles or flying above them, this study aims to minimize the path length, energy consumption, and maximum path risk simultaneously.
arXiv Detail & Related papers (2020-04-12T13:42:05Z) - CNN Encoder to Reduce the Dimensionality of Data Image for Motion
Planning [1.244705780038575]
We propose a CNN encoder capable of eliminating useless routes for motion planning problems.
In all evaluated scenarios, our solution reduced the number of iterations by more than 60%.
arXiv Detail & Related papers (2020-04-10T15:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.