Bypassing or flying above the obstacles? A novel multi-objective UAV
path planning problem
- URL: http://arxiv.org/abs/2004.08279v1
- Date: Sun, 12 Apr 2020 13:42:05 GMT
- Title: Bypassing or flying above the obstacles? A novel multi-objective UAV
path planning problem
- Authors: Mahmoud Golabi, Soheila Ghambari, Julien Lepagnot, Laetitia Jourdan,
Mathieu Brevilliers, Lhassane Idoumghar
- Abstract summary: This study proposes a novel integer programming model for a collision-free discrete drone path planning problem.
Considering the possibility of bypassing obstacles or flying above them, this study aims to minimize the path length, energy consumption, and maximum path risk simultaneously.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes a novel multi-objective integer programming model for a
collision-free discrete drone path planning problem. Considering the
possibility of bypassing obstacles or flying above them, this study aims to
minimize the path length, energy consumption, and maximum path risk
simultaneously. The static environment is represented as 3D grid cells. Due to
the NP-hardness nature of the problem, several state-of-theart evolutionary
multi-objective optimization (EMO) algorithms with customized crossover and
mutation operators are applied to find a set of non-dominated solutions. The
results show the effectiveness of applied algorithms in solving several
generated test cases.
Related papers
- Aerial Reliable Collaborative Communications for Terrestrial Mobile Users via Evolutionary Multi-Objective Deep Reinforcement Learning [59.660724802286865]
Unmanned aerial vehicles (UAVs) have emerged as the potential aerial base stations (BSs) to improve terrestrial communications.
This work employs collaborative beamforming through a UAV-enabled virtual antenna array to improve transmission performance from the UAV to terrestrial mobile users.
arXiv Detail & Related papers (2025-02-09T09:15:47Z) - Navigation Variable-based Multi-objective Particle Swarm Optimization for UAV Path Planning with Kinematic Constraints [0.8192907805418583]
Path planning is essential for unmanned aerial vehicles (UAVs) as it determines the path that the UAV needs to follow to complete a task.
This work introduces a new algorithm called navigation variable-based multi-objective particle swarm optimization (NMOPSO)
The algorithm features a new path representation based on navigation variables to include kinematic constraints and exploit the maneuverable characteristics of the UAV.
arXiv Detail & Related papers (2025-01-03T16:07:37Z) - Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models [57.45019514036948]
Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics.
This work proposes a novel approach that integrates constrained optimization with diffusion models for MAPF in continuous spaces.
arXiv Detail & Related papers (2024-12-23T21:27:19Z) - Genetic Algorithm Based System for Path Planning with Unmanned Aerial Vehicles Swarms in Cell-Grid Environments [42.72938925647165]
Path Planning methods for autonomously controlling swarms of unmanned aerial vehicles (UAVs) are gaining momentum.
An increasing number of scenarios now require autonomous control of multiple UAVs, as autonomous operation can significantly reduce labor costs.
Many of these scenarios, however, involve obstacles such as power lines and trees, which complicate Path Planning.
This paper presents an evolutionary-based system employing genetic algorithms to address this problem in environments with obstacles.
arXiv Detail & Related papers (2024-12-04T16:24:41Z) - SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought [78.53885607559958]
A novel approach using vision language models (VLMs) is proposed for enabling path planning in complex wireless-aware environments.
To this end, insights from a digital twin with real-world wireless ray tracing data are explored.
Results show that SCoTT achieves very close average path gains compared to DP-WA* while at the same time yielding consistently shorter path lengths.
arXiv Detail & Related papers (2024-11-27T10:45:49Z) - Weighted strategies to guide a multi-objective evolutionary algorithm
for multi-UAV mission planning [12.97430155510359]
This work proposes a weighted random generator for the creation and mutation of new individuals.
The main objective of this work is to reduce the convergence rate of the MOEA solver for multi-UAV mission planning.
arXiv Detail & Related papers (2024-02-28T23:05:27Z) - Constrained multi-objective optimization for multi-UAV planning [5.574995936464475]
In this work, this problem has been solved using a multi-objective evolutionary algorithm combined with a constraint satisfaction problem model.
The algorithm has been tested on several missions of increasing complexity, and the computational complexity of the different element considered in the missions has been studied.
arXiv Detail & Related papers (2024-02-09T17:39:02Z) - POA: Passable Obstacles Aware Path-planning Algorithm for Navigation of
a Two-wheeled Robot in Highly Cluttered Environments [53.41594627336511]
Passable Obstacles Aware (POA) planner is a novel navigation method for two-wheeled robots in a cluttered environment.
Our algorithm allows two-wheeled robots to find a path through passable obstacles.
arXiv Detail & Related papers (2023-07-16T19:44:27Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Enhanced Teaching-Learning-based Optimization for 3D Path Planning of
Multicopter UAVs [2.0305676256390934]
This paper introduces a new path planning algorithm for unmanned aerial vehicles (UAVs) based on the teaching-learning-based optimization technique.
We first define an objective function that incorporates requirements on the path length and constraints on the movement and safe operation of UAVs.
The algorithm named Multi-subject TLBO is then proposed to minimize the formulated objective function.
arXiv Detail & Related papers (2022-05-31T16:00:32Z) - Follow the bisector: a simple method for multi-objective optimization [65.83318707752385]
We consider optimization problems, where multiple differentiable losses have to be minimized.
The presented method computes descent direction in every iteration to guarantee equal relative decrease of objective functions.
arXiv Detail & Related papers (2020-07-14T09:50:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.