OceanGPT: A Large Language Model for Ocean Science Tasks
- URL: http://arxiv.org/abs/2310.02031v8
- Date: Tue, 3 Sep 2024 10:19:52 GMT
- Title: OceanGPT: A Large Language Model for Ocean Science Tasks
- Authors: Zhen Bi, Ningyu Zhang, Yida Xue, Yixin Ou, Daxiong Ji, Guozhou Zheng, Huajun Chen,
- Abstract summary: We introduce OceanGPT, the first-ever large language model in the ocean domain, which is expert in various ocean science tasks.
We also propose OceanGPT, a novel framework to automatically obtain a large volume of ocean domain instruction data.
We construct the first oceanography benchmark, OceanBench, to evaluate the capabilities of LLMs in the ocean domain.
- Score: 37.053614694078014
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ocean science, which delves into the oceans that are reservoirs of life and biodiversity, is of great significance given that oceans cover over 70% of our planet's surface. Recently, advances in Large Language Models (LLMs) have transformed the paradigm in science. Despite the success in other domains, current LLMs often fall short in catering to the needs of domain experts like oceanographers, and the potential of LLMs for ocean science is under-explored. The intrinsic reasons are the immense and intricate nature of ocean data as well as the necessity for higher granularity and richness in knowledge. To alleviate these issues, we introduce OceanGPT, the first-ever large language model in the ocean domain, which is expert in various ocean science tasks. We also propose OceanGPT, a novel framework to automatically obtain a large volume of ocean domain instruction data, which generates instructions based on multi-agent collaboration. Additionally, we construct the first oceanography benchmark, OceanBench, to evaluate the capabilities of LLMs in the ocean domain. Though comprehensive experiments, OceanGPT not only shows a higher level of knowledge expertise for oceans science tasks but also gains preliminary embodied intelligence capabilities in ocean technology.
Related papers
- Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
Large Language Models (LLMs) have emerged as a transformative power in enhancing natural language comprehension.
The application of LLMs extends beyond conventional linguistic boundaries, encompassing specialized linguistic systems developed within various scientific disciplines.
As a burgeoning area in the community of AI for Science, scientific LLMs warrant comprehensive exploration.
arXiv Detail & Related papers (2024-01-26T05:33:34Z) - GeoGalactica: A Scientific Large Language Model in Geoscience [95.15911521220052]
Large language models (LLMs) have achieved huge success for their general knowledge and ability to solve a wide spectrum of tasks in natural language processing (NLP)
We specialize an LLM into geoscience, by further pre-training the model with a vast amount of texts in geoscience, as well as supervised fine-tuning (SFT) the resulting model with our custom collected instruction tuning dataset.
We train GeoGalactica over a geoscience-related text corpus containing 65 billion tokens, preserving as the largest geoscience-specific text corpus.
Then we fine-tune the model with 1 million pairs of instruction-tuning
arXiv Detail & Related papers (2023-12-31T09:22:54Z) - Revolutionizing Underwater Exploration of Autonomous Underwater Vehicles
(AUVs) and Seabed Image Processing Techniques [0.0]
The oceans in the Earth's in one of the last border lines on the World, with only a fraction of their depths having been explored.
Advances in technology have led to the development of Autonomous Underwater Vehicles (AUVs) that can operate independently and perform complex tasks underwater.
In this comprehensive survey, we will explore the latest advancements in AUV technology and seabed image processing techniques.
arXiv Detail & Related papers (2023-11-22T06:45:44Z) - AI-GOMS: Large AI-Driven Global Ocean Modeling System [3.635120568177384]
Ocean modeling is a powerful tool for simulating the physical, chemical, and biological processes of the ocean.
Here, we present AI-GOMS, a large AI-driven global ocean modeling system, for accurate and efficient global ocean daily prediction.
arXiv Detail & Related papers (2023-08-06T15:59:30Z) - Spatial-Temporal Data Mining for Ocean Science: Data, Methodologies, and
Opportunities [33.342420636418794]
spatial-temporal data mining (STDM) studies have been conducted to address various oceanic issues.
STDM studies are difficult to design and train because of unique characteristics, e.g., diverse regionality and high sparsity.
This paper provides a comprehensive survey of existing STDM studies for ocean science.
arXiv Detail & Related papers (2023-07-20T12:12:05Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
Global warming made the Arctic available for marine operations and created demand for reliable operational sea ice forecasts.
In this work, we investigate the performance of the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days.
We show that this deep learning model can outperform simple baselines by a significant margin and improve its quality by using additional weather data and training on multiple regions.
arXiv Detail & Related papers (2022-10-17T09:14:35Z) - Is the use of Deep Learning and Artificial Intelligence an appropriate
means to locate debris in the ocean without harming aquatic wildlife? [3.0478504236139528]
This study aims to assess whether deep learning can successfully distinguish between marine life and man-made debris underwater.
The aim is to find if we are safely able to clean up our oceans with Artificial Intelligence without disrupting the delicate balance of the aquatic ecosystems.
arXiv Detail & Related papers (2021-12-01T00:12:04Z) - FathomNet: A global underwater image training set for enabling
artificial intelligence in the ocean [0.0]
Ocean-going platforms are integrating high-resolution camera feeds for observation and navigation, producing a deluge of visual data.
Recent advances in machine learning enable fast, sophisticated analysis of visual data, but have had limited success in the oceanographic world.
We will demonstrate how machine learning models trained on FathomNet data can be applied across different institutional video data.
arXiv Detail & Related papers (2021-09-29T18:08:42Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
We focus on the element of hydrologic rainfall--runoff models and their application to forecast floods and predict streamflow.
This guide aims to help interested data scientists gain an understanding of the problem, the hydrologic concepts involved, and the details that come up along the way.
arXiv Detail & Related papers (2020-06-05T08:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.