論文の概要: Large Language Models Meet Knowledge Graphs to Answer Factoid Questions
- arxiv url: http://arxiv.org/abs/2310.02166v1
- Date: Tue, 3 Oct 2023 15:57:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 13:27:52.531310
- Title: Large Language Models Meet Knowledge Graphs to Answer Factoid Questions
- Title(参考訳): ファクトイド問題に答える知識グラフを備えた大規模言語モデル
- Authors: Mikhail Salnikov, Hai Le, Prateek Rajput, Irina Nikishina, Pavel
Braslavski, Valentin Malykh and Alexander Panchenko
- Abstract要約: 本稿では,知識グラフから追加情報に富んだ事前学習されたテキスト・テキスト言語モデルを探索する手法を提案する。
抽出した部分グラフの線形化によりトランスフォーマーモデルで容易に情報を得る。
抽出された情報で回答候補を最終ランク付けすると、事前訓練されたテキスト-テキスト言語モデルのHits@1スコアが4-6%向上する。
- 参考スコア(独自算出の注目度): 57.47634017738877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, it has been shown that the incorporation of structured knowledge
into Large Language Models significantly improves the results for a variety of
NLP tasks. In this paper, we propose a method for exploring pre-trained
Text-to-Text Language Models enriched with additional information from
Knowledge Graphs for answering factoid questions. More specifically, we propose
an algorithm for subgraphs extraction from a Knowledge Graph based on question
entities and answer candidates. Then, we procure easily interpreted information
with Transformer-based models through the linearization of the extracted
subgraphs. Final re-ranking of the answer candidates with the extracted
information boosts Hits@1 scores of the pre-trained text-to-text language
models by 4-6%.
- Abstract(参考訳): 近年,構造化知識を大規模言語モデルに組み込むことによって,様々なNLPタスクの結果が大幅に向上することが示されている。
本稿では,学習済みのテキストからテキストへの言語モデルについて,知識グラフからの付加情報に富み,事実的疑問に答える手法を提案する。
より具体的には,質問対象と回答候補に基づく知識グラフから部分グラフを抽出するアルゴリズムを提案する。
そして,抽出した部分グラフの線形化により,トランスフォーマーモデルで容易に解釈できる情報を得る。
抽出された情報で回答候補を最終ランク付けすると、事前訓練されたテキスト-テキスト言語モデルのHits@1スコアが4-6%向上する。
関連論文リスト
- Question-guided Knowledge Graph Re-scoring and Injection for Knowledge Graph Question Answering [27.414670144354453]
KGQAは知識グラフに格納された構造化情報を活用することで自然言語の質問に答える。
本稿では,Q-KGR(Q-Guided Knowledge Graph Re-scoring method)を提案する。
また,大規模言語モデルに再認識された知識グラフを注入するパラメータ効率の高い手法であるKnowformerを導入し,事実推論を行う能力を高める。
論文 参考訳(メタデータ) (2024-10-02T10:27:07Z) - Infusing Knowledge into Large Language Models with Contextual Prompts [5.865016596356753]
入力テキスト中の文脈からプロンプトを生成することにより,知識注入のためのシンプルだが一般化可能なアプローチを提案する。
本実験は, 微調整LDMを用いて評価する手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-03T11:19:26Z) - Surveying the Landscape of Text Summarization with Deep Learning: A
Comprehensive Review [2.4185510826808487]
ディープラーニングは、言語データの複雑な表現を学習できるモデルの開発を可能にすることによって、自然言語処理(NLP)に革命をもたらした。
NLPのディープラーニングモデルは、通常、大量のデータを使用してディープニューラルネットワークをトレーニングし、言語データ内のパターンと関係を学習する。
テキスト要約にディープラーニングを適用することは、テキスト要約タスクを実行するためにディープニューラルネットワークを使用することを指す。
論文 参考訳(メタデータ) (2023-10-13T21:24:37Z) - Answer Candidate Type Selection: Text-to-Text Language Model for Closed
Book Question Answering Meets Knowledge Graphs [62.20354845651949]
本稿では,この問題を解決するために,事前学習されたテキスト間QAシステム上で機能する新しいアプローチを提案する。
提案手法は,Wikidataの"instance_of"プロパティの型に基づいて,生成した候補のフィルタリングと再ランク付けを行う。
論文 参考訳(メタデータ) (2023-10-10T20:49:43Z) - ChatGraph: Interpretable Text Classification by Converting ChatGPT
Knowledge to Graphs [54.48467003509595]
ChatGPTは、様々な自然言語処理(NLP)タスクにおいて優れたパフォーマンスを示している。
テキスト分類などの特定のタスクにChatGPTのパワーを利用する新しいフレームワークを提案する。
本手法は,従来のテキスト分類法と比較して,より透過的な意思決定プロセスを提供する。
論文 参考訳(メタデータ) (2023-05-03T19:57:43Z) - Retrieval augmentation of large language models for lay language
generation [12.686922203465896]
本稿では,最大 (63kペア) および最大 (12ジャーナル) 並列コーパスである CellS を紹介した。
抽象化とそれに対応するレイ言語要約は、ドメインの専門家によって書かれ、データセットの品質が保証されます。
我々はCellSから2つの特別なペアコーパスを抽出し、素言語生成における重要な課題に対処する。
論文 参考訳(メタデータ) (2022-11-07T19:06:53Z) - Deep Bidirectional Language-Knowledge Graph Pretraining [159.9645181522436]
DRAGONは、テキストとKGを大規模に融合した言語知識基盤モデルを事前学習するための自己教師型アプローチである。
我々のモデルは、入力としてテキストセグメントと関連するKGサブグラフのペアを取り、両モードから情報を双方向に融合する。
論文 参考訳(メタデータ) (2022-10-17T18:02:52Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Syntax-informed Question Answering with Heterogeneous Graph Transformer [2.139714421848487]
本稿では、事前学習されたニューラルネットワークモデルを拡張し、微調整する言語インフォームド質問応答手法を提案する。
本稿では,トークンと仮想トークンを接続する依存関係グラフ構造と領域グラフィック構造という形で,構文情報の追加によるアプローチについて説明する。
論文 参考訳(メタデータ) (2022-04-01T07:48:03Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。