論文の概要: A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration
- arxiv url: http://arxiv.org/abs/2310.02170v2
- Date: Fri, 15 Nov 2024 04:30:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:29.328777
- Title: A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration
- Title(参考訳): タスク指向エージェント協調のための動的LLMエージェントネットワーク
- Authors: Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, Diyi Yang,
- Abstract要約: 本稿では,様々なタスクやドメインに対する動的コミュニケーション構造において,候補からエージェントのチームを自動的に選択する手法を提案する。
具体的には, LLMを利用したエージェント協調のための動的LLMパワーエージェントネットワーク(textDyLAN$)というフレームワークを構築した。
我々は、コード生成、意思決定、一般的な推論、算術的推論タスクにおいて、適度な計算コストで、DyLANが強力なベースラインを上回ることを実証する。
- 参考スコア(独自算出の注目度): 55.35849138235116
- License:
- Abstract: Recent studies show that collaborating multiple large language model (LLM) powered agents is a promising way for task solving. However, current approaches are constrained by using a fixed number of agents and static communication structures. In this work, we propose automatically selecting a team of agents from candidates to collaborate in a dynamic communication structure toward different tasks and domains. Specifically, we build a framework named Dynamic LLM-Powered Agent Network ($\textbf{DyLAN}$) for LLM-powered agent collaboration, operating a two-stage paradigm: (1) Team Optimization and (2) Task Solving. During the first stage, we utilize an $\textit{agent selection}$ algorithm, based on an unsupervised metric called $\textit{Agent Importance Score}$, enabling the selection of best agents according to their contributions in a preliminary trial, oriented to the given task. Then, in the second stage, the selected agents collaborate dynamically according to the query. Empirically, we demonstrate that DyLAN outperforms strong baselines in code generation, decision-making, general reasoning, and arithmetic reasoning tasks with moderate computational cost. On specific subjects in MMLU, selecting a team of agents in the team optimization stage improves accuracy by up to 25.0% in DyLAN.
- Abstract(参考訳): 近年の研究では,多言語モデル (LLM) を用いたエージェントの協調作業が課題解決の有望な方法であることが示されている。
しかし、現在のアプローチは固定数のエージェントと静的通信構造を用いることで制約される。
本研究では,様々なタスクやドメインに対して,動的コミュニケーション構造で協調するエージェントのチームを自動的に選択する手法を提案する。
具体的には, LLM を利用したエージェントコラボレーションのための動的 LLM パワーエージェントネットワーク (\textbf{DyLAN}$) というフレームワークを構築し, チーム最適化と (2) タスク解決という2段階のパラダイムを運用する。
最初の段階では、$\textit{Agent Importance Score}$と呼ばれる教師なしのメトリクスに基づいて、$\textit{agent selection}$アルゴリズムを使用します。
そして、第2段階で、選択されたエージェントがクエリに従って動的に協調する。
実証的に、DyLANは、コード生成、意思決定、一般的な推論、算術的推論タスクにおいて、適度な計算コストで、強力なベースラインを上回ります。
MMLUの特定の課題について、チーム最適化段階でエージェントのチームを選択すると、DyLANの最大25.0%の精度が向上する。
関連論文リスト
- MorphAgent: Empowering Agents through Self-Evolving Profiles and Decentralized Collaboration [8.078098082305575]
本稿では,分散マルチエージェントコラボレーションのための新しいフレームワークであるMorphAgentを紹介する。
MorphAgentは3つの主要なメトリクスで最適化された自己進化エージェントプロファイルを使用している。
実験の結果,MorphAgentはタスク性能や要求の変化に対する適応性という点で従来の静的ロールMASよりも優れていた。
論文 参考訳(メタデータ) (2024-10-19T09:10:49Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
この研究は、LLMベースのエージェントを使用して、協調AIシステムを自律的に設計する試みである。
ComfyBenchをベースとしたComfyAgentは,エージェントが自律的に協調的なAIシステムを生成して設計できるようにするフレームワークである。
ComfyAgentは、o1-previewに匹敵する解像度を達成し、ComfyBenchの他のエージェントをはるかに上回っているが、ComfyAgentはクリエイティブタスクの15%しか解決していない。
論文 参考訳(メタデータ) (2024-09-02T17:44:10Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - On the Resilience of LLM-Based Multi-Agent Collaboration with Faulty Agents [58.79302663733703]
大規模言語モデルに基づくマルチエージェントシステムは、専門家エージェントの協力により、様々なタスクにまたがる優れた能力を示している。
しかし、不器用なエージェントや悪意のあるエージェントがシステム全体のパフォーマンスに与える影響は、まだ解明されていない。
本稿では, 種々のシステム構造の耐震性について考察する。
論文 参考訳(メタデータ) (2024-08-02T03:25:20Z) - Adaptive In-conversation Team Building for Language Model Agents [33.03550687362213]
複数の大規模言語モデル(LLM)エージェントを活用することは、複雑なタスクに取り組む上で有望なアプローチであることが示されている。
私たちの新しい適応型チーム構築パラダイムは、Captain Agentという新しいエージェント設計を通じて実現された柔軟なソリューションを提供します。
6つの実世界のシナリオに対する包括的な評価は、Captain Agentが既存のマルチエージェントメソッドを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-05-29T18:08:37Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
オープンソースのLarge Language Models(LLM)は、さまざまなNLPタスクで大きな成功を収めていますが、エージェントとして振る舞う場合、それでもAPIベースのモデルよりもはるかに劣っています。
本稿では,(1) エージェント学習コーパスを,(1) エージェント学習データの分布から大きくシフトするエージェント推論と,(2) エージェントタスクが必要とする能力に異なる学習速度を示すエージェント学習コーパスと,(3) 幻覚を導入することでエージェント能力を改善する際の副作用について述べる。
本稿では,エージェントのためのFLANモデルを効果的に構築するためのエージェントFLANを提案する。
論文 参考訳(メタデータ) (2024-03-19T16:26:10Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
ツール学習は、外部ツールを使用してユーティリティを拡張するエージェントとして、大きな言語モデル(LLM)を促進する。
ツール選択,ツール実行,アクションキャリブレーションの3つの特別なエージェントを個別にコーディネートする,協調型対話型エージェントフレームワークであるConAgentsを提案する。
3つのデータセットに対する実験により、LLMは、ConAgentsを装備した場合、大幅に改善されたベースラインよりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-05T15:08:16Z) - Agents meet OKR: An Object and Key Results Driven Agent System with
Hierarchical Self-Collaboration and Self-Evaluation [25.308341461293857]
OKR-Agentは、タスク解決におけるLarge Language Models(LLM)の機能を強化するように設計されている。
我々のフレームワークには、階層オブジェクトとキー結果の生成とマルチレベル評価という、2つの新しいモジュールが含まれています。
論文 参考訳(メタデータ) (2023-11-28T06:16:30Z) - AutoAgents: A Framework for Automatic Agent Generation [27.74332323317923]
AutoAgentsは、さまざまなタスクに応じてAIチームを構築するために、複数の専門エージェントを適応的に生成し、コーディネートする革新的なフレームワークである。
各種ベンチマーク実験により,AutoAgentsは既存のマルチエージェント手法よりも一貫性と正確な解を生成することが示された。
論文 参考訳(メタデータ) (2023-09-29T14:46:30Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
本稿では,複数エージェントの結合状態空間の予測被覆時間を最小化し,マルチエージェントオプションを構築するマルチエージェントDeep Covering Option Discoveryを提案する。
また、MARLプロセスにマルチエージェントオプションを採用するための新しいフレームワークを提案する。
提案アルゴリズムは,アテンション機構とエージェントの相互作用を効果的に把握し,マルチエージェントオプションの同定に成功した。
論文 参考訳(メタデータ) (2022-10-07T00:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。