論文の概要: Meta-Task Planning for Language Agents
- arxiv url: http://arxiv.org/abs/2405.16510v3
- Date: Thu, 30 May 2024 12:40:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 19:55:33.980320
- Title: Meta-Task Planning for Language Agents
- Title(参考訳): 言語エージェントのためのメタタスク計画
- Authors: Cong Zhang, Derrick Goh Xin Deik, Dexun Li, Hao Zhang, Yong Liu,
- Abstract要約: 大規模言語モデルベースエージェント(LLMエージェント)は、人工知能(AGI)を実現するための有望なパラダイムとして登場した。
本稿では,メタタスク計画(Meta-Task Planning, MTP)を紹介する。
MTPはTravelPlannerで平均$sim40%$成功率を達成した。
- 参考スコア(独自算出の注目度): 13.550774629515843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of neural language models has sparked a new surge of intelligent agent research. Unlike traditional agents, large language model-based agents (LLM agents) have emerged as a promising paradigm for achieving artificial general intelligence (AGI) due to their superior reasoning and generalization capabilities. Effective planning is crucial for the success of LLM agents in real-world tasks, making it a highly pursued topic in the community. Current planning methods typically translate tasks into executable action sequences. However, determining a feasible or optimal sequence for complex tasks at fine granularity, which often requires compositing long chains of heterogeneous actions, remains challenging. This paper introduces Meta-Task Planning (MTP), a zero-shot methodology for collaborative LLM-based multi-agent systems that simplifies complex task planning by decomposing it into a hierarchy of subordinate tasks, or meta-tasks. Each meta-task is then mapped into executable actions. MTP was assessed on two rigorous benchmarks, TravelPlanner and API-Bank. Notably, MTP achieved an average $\sim40\%$ success rate on TravelPlanner, significantly higher than the state-of-the-art (SOTA) baseline ($2.92\%$), and outperforming $LLM_{api}$-4 with ReAct on API-Bank by $\sim14\%$, showing the immense potential of integrating LLM with multi-agent systems.
- Abstract(参考訳): ニューラルネットワークモデルの急速な進歩は、インテリジェントエージェント研究の新たな飛躍を引き起こした。
従来のエージェントとは異なり、大規模言語モデルベースエージェント(LLMエージェント)は、より優れた推論と一般化能力のために、人工知能(AGI)を実現するための有望なパラダイムとして登場した。
LLMエージェントが現実のタスクで成功するためには,効果的な計画が不可欠である。
現在の計画手法は通常、タスクを実行可能なアクションシーケンスに変換する。
しかし、複雑なタスクを細粒度で実行可能であるか最適な順序を決定することは、しばしば不均一なアクションの長い連鎖を構成することを必要とするが、依然として困難である。
本稿では,メタタスク計画(Meta-Task Planning, MTP)について紹介する。
各メタタスクは実行可能アクションにマッピングされる。
MTPはTravelPlannerとAPI-Bankの2つの厳格なベンチマークで評価された。
特に、MTPはTravelPlannerで平均$\sim40\%$成功率を達成し、最先端(SOTA)ベースライン(2.92\%$)よりもはるかに高く、API-BankでReActで$LLM_{api}$-4を上回り、LCMをマルチエージェントシステムに統合する可能性を示している。
関連論文リスト
- Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Do We Really Need a Complex Agent System? Distill Embodied Agent into a Single Model [15.558269067931374]
オープンなエンボディタスクのための階層的知識蒸留フレームワークであるSTEVE-2を提案する。
蒸留後、実施エージェントは専門的なガイダンスなしで複雑なオープンエンドタスクを完了することができる。
論文 参考訳(メタデータ) (2024-04-06T12:51:00Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - KnowAgent: Knowledge-Augmented Planning for LLM-Based Agents [54.09074527006576]
大規模言語モデル(LLM)は複雑な推論タスクにおいて大きな可能性を証明していますが、より高度な課題に取り組むには不十分です。
この不適切さは、主に言語エージェントのアクション知識が組み込まれていないことに起因する。
我々は、明示的な行動知識を取り入れることで、LLMの計画能力を高めるために設計された新しいアプローチであるKnowAgentを紹介する。
論文 参考訳(メタデータ) (2024-03-05T16:39:12Z) - TDAG: A Multi-Agent Framework based on Dynamic Task Decomposition and
Agent Generation [45.028795422801764]
動的タスク分解・エージェント生成(TDAG)に基づくマルチエージェントフレームワークを提案する。
このフレームワークは複雑なタスクを小さなサブタスクに動的に分解し、それぞれが特定の生成されたサブエージェントに割り当てる。
ItineraryBenchは、さまざまな複雑さのタスク間でのメモリ、計画、ツール使用量のエージェントの能力を評価するように設計されている。
論文 参考訳(メタデータ) (2024-02-15T18:27:37Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
As-Needed Decomposition and Planning for Complex Tasks (ADaPT)について紹介する。
ADaPTは、Large Language Modelsがそれらを実行できない場合、複雑なサブタスクを明示的に計画し、分解する。
以上の結果から,ADaPTは強いベースラインを確立した。
論文 参考訳(メタデータ) (2023-11-08T17:59:15Z) - MetaGPT: Meta Programming for A Multi-Agent Collaborative Framework [13.89266709897205]
マルチエージェントコラボレーションに効率的な人間を取り入れた,革新的なメタプログラミングフレームワークであるMetaGPTを紹介する。
MetaGPTは、より合理化された検証のために、SOP(Standardized Operating Procedures)をプロンプトシーケンスにエンコードする。
協調ソフトウェアエンジニアリングベンチマークでは、MetaGPTは従来のチャットベースのマルチエージェントシステムよりも一貫性のあるソリューションを生成する。
論文 参考訳(メタデータ) (2023-08-01T07:49:10Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
事前訓練された大言語モデル(LLM)は、世界に関する手続き的な知識をキャプチャする。
Plan, Eliminate, and Track (PET)フレームワークはタスク記述をハイレベルなサブタスクのリストに変換する。
PETフレームワークは、人間の目標仕様への一般化のために、SOTAよりも15%改善されている。
論文 参考訳(メタデータ) (2023-05-03T20:11:22Z) - LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large
Language Models [27.318186938382233]
本研究では,大規模言語モデル(LLM)を具体化エージェントのプランナーとして用いることに焦点を当てた。
そこで本研究では,大規模言語モデルのパワーを活かして少数ショットプランニングを行う新しい手法 LLM-Planner を提案する。
論文 参考訳(メタデータ) (2022-12-08T05:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。