Variational Coherent Quantum Annealing
- URL: http://arxiv.org/abs/2310.02248v1
- Date: Tue, 3 Oct 2023 17:53:03 GMT
- Title: Variational Coherent Quantum Annealing
- Authors: N. Barraza, G. Alvarado Barrios, I. Montalban, E. Solano, and F.
Albarr\'an-Arriagada
- Abstract summary: We present a hybrid classical-quantum computing paradigm where the quantum part strictly runs within the coherence time of a quantum annealer.
We introduce auxiliary Hamiltonians that vanish at the beginning and end of the evolution to increase the energy gap during the process.
We achieve a substantial reduction in the ground-state error with just six variational parameters and a duration within the device coherence times.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a hybrid classical-quantum computing paradigm where the quantum
part strictly runs within the coherence time of a quantum annealer, a method we
call variational coherent quantum annealing (VCQA). It involves optimizing the
schedule functions governing the quantum dynamics by employing a piecewise
family of tailored functions. We also introduce auxiliary Hamiltonians that
vanish at the beginning and end of the evolution to increase the energy gap
during the process, subsequently reducing the algorithm times. We develop
numerical tests using z-local terms as the auxiliary Hamiltonian while
considering linear, cyclic, and star connectivity. Moreover, we test our
algorithm for a non-stoquastic Hamiltonian such as a Heisenberg chain, showing
the potential of the VCQA proposal in different scenarios. In this manner, we
achieve a substantial reduction in the ground-state error with just six
variational parameters and a duration within the device coherence times.
Therefore, the proposed VCQA paradigm offers exciting prospects for current
quantum annealers.
Related papers
- Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Quantum quench dynamics as a shortcut to adiabaticity [31.114245664719455]
We develop and test a quantum algorithm in which the incorporation of a quench step serves as a remedy to the diverging adiabatic timescale.
Our experiments show that this approach significantly outperforms the adiabatic algorithm.
arXiv Detail & Related papers (2024-05-31T17:07:43Z) - Truncation technique for variational quantum eigensolver for Molecular
Hamiltonians [0.0]
variational quantum eigensolver (VQE) is one of the most promising quantum algorithms for noisy quantum devices.
We propose a physically intuitive truncation technique that starts the optimization procedure with a truncated Hamiltonian.
This strategy allows us to reduce the required number of evaluations for the expectation value of Hamiltonian on a quantum computer.
arXiv Detail & Related papers (2024-02-02T18:45:12Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Variational quantum algorithms for local Hamiltonian problems [0.0]
Variational quantum algorithms (VQAs) are a modern family of quantum algorithms designed to solve optimization problems using a quantum computer.
We primarily focus on the algorithm called variational quantum eigensolver (VQE), which takes a qubit Hamiltonian and returns its approximate ground state.
arXiv Detail & Related papers (2022-08-23T22:32:56Z) - Chaos in coupled Kerr-nonlinear parametric oscillators [0.0]
We investigate complex dynamics, i.e., chaos, in two coupled nondissipative KPOs at a few-photon level.
We conclude that some of them can be regarded as quantum signatures of chaos, together with energy-level spacing statistics.
arXiv Detail & Related papers (2021-10-08T10:35:12Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
Unitary evolution under a time dependent Hamiltonian is a key component of simulation on quantum hardware.
We present an algorithm that compresses the Trotter steps into a single block of quantum gates.
This results in a fixed depth time evolution for certain classes of Hamiltonians.
arXiv Detail & Related papers (2021-08-06T19:38:01Z) - Variational Quantum Eigensolver for Frustrated Quantum Systems [0.0]
A variational quantum eigensolver, or VQE, is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian.
Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions.
We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits.
arXiv Detail & Related papers (2020-05-01T18:00:01Z) - K-spin Hamiltonian for quantum-resolvable Markov decision processes [0.0]
We derive a pseudo-Boolean cost function that is equivalent to a K-spin Hamiltonian representation of the discrete, finite, discounted Markov decision process.
This K-spin Hamiltonian furnishes a starting point from which to solve for an optimal policy using quantum algorithms.
arXiv Detail & Related papers (2020-04-13T16:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.