Comparative Evaluation of Transfer Learning for Classification of Brain
Tumor Using MRI
- URL: http://arxiv.org/abs/2310.02270v1
- Date: Sun, 24 Sep 2023 03:46:38 GMT
- Title: Comparative Evaluation of Transfer Learning for Classification of Brain
Tumor Using MRI
- Authors: Abu Kaisar Mohammad Masum, Nusrat Badhon, S.M. Saiful Islam Badhon,
Nushrat Jahan Ria, Sheikh Abujar, Muntaser Mansur Syed, and Naveed Mahmud
- Abstract summary: Brain cancer diagnosis has been considerably expedited by the field of computer-assisted diagnostics.
In our study, we categorize three different kinds of brain tumors using four transfer learning techniques.
Our models were tested on a benchmark dataset of $3064$ MRI pictures representing three different forms of brain cancer.
- Score: 0.5235143203977018
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Abnormal growth of cells in the brain and its surrounding tissues is known as
a brain tumor. There are two types, one is benign (non-cancerous) and another
is malignant (cancerous) which may cause death. The radiologists' ability to
diagnose malignancies is greatly aided by magnetic resonance imaging (MRI).
Brain cancer diagnosis has been considerably expedited by the field of
computer-assisted diagnostics, especially in machine learning and deep
learning. In our study, we categorize three different kinds of brain tumors
using four transfer learning techniques. Our models were tested on a benchmark
dataset of $3064$ MRI pictures representing three different forms of brain
cancer. Notably, ResNet-50 outperformed other models with a remarkable accuracy
of $99.06\%$. We stress the significance of a balanced dataset for improving
accuracy without the use of augmentation methods. Additionally, we
experimentally demonstrate our method and compare with other classification
algorithms on the CE-MRI dataset using evaluations like F1-score, AUC,
precision and recall.
Related papers
- Efficient Feature Extraction and Classification Architecture for MRI-Based Brain Tumor Detection [0.23301643766310373]
Brain MRIs are notoriously imprecise in revealing the presence or absence of tumors.
In this study, a Convolutional Neural Network (CNN) was trained to identify the presence of a tumor.
Results from the CNN model showed an accuracy of 99.17%.
arXiv Detail & Related papers (2024-10-30T00:47:32Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Brain Tumor Classification From MRI Images Using Machine Learning [0.24739484546803336]
Brain tumor is a life-threatening problem and hampers the normal functioning of the human body.
The use of deep learning algorithms in medical imaging has resulted in significant improvements in the classification and diagnosis of brain tumors.
The objective of this project is to develop a predictive system for brain tumor detection using machine learning.
arXiv Detail & Related papers (2024-07-15T11:30:40Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
A public MRI dataset contains 3064 TI-weighted images from 233 patients with three variants of brain tumor, viz. meningioma, glioma, and pituitary tumor.
The dataset files were converted and preprocessed before indulging into the methodology which employs implementation and training of some well-known image segmentation deep learning models.
The experimental findings showed that among all the applied approaches, the recurrent residual U-Net which uses Adam reaches a Mean Intersection Over Union of 0.8665 and outperforms other compared state-of-the-art deep learning models.
arXiv Detail & Related papers (2023-04-29T13:33:21Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3D CNN-based models dominate the field of magnetic resonance image (MRI) analytics.
In this paper, four datasets of Alzheimer's and Parkinson's disease recognition are utilized in experiments.
In terms of efficiency, the video framework performs better than 3D-CNN models by 5% - 11% with 50% - 66% less trainable parameters.
arXiv Detail & Related papers (2023-02-24T15:26:31Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
preoperative discrimination between T2 and T3 stages is arguably both the most challenging and clinically significant task for rectal cancer treatment.
We present a volumetric convolutional neural network to accurately discriminate T2 from T3 stage rectal cancer with rectal MR volumes.
arXiv Detail & Related papers (2022-09-13T07:10:14Z) - Detection and Classification of Brain tumors Using Deep Convolutional
Neural Networks [0.0]
Tumour in the brain is fatal as it may be cancerous.
There are different sizes and locations of brain tumors which makes it difficult to understand their nature.
This paper is to differentiate between normal and abnormal pixels and also classify them with better accuracy.
arXiv Detail & Related papers (2022-08-28T18:24:22Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
We present a novel approach of directly learning deep embeddings for brain tumor types, which can be used for downstream tasks such as classification.
We evaluate our method on an extensive brain tumor dataset which consists of 27 different tumor classes, out of which 13 are defined as rare.
arXiv Detail & Related papers (2021-08-08T11:26:34Z) - Brain Tumor Classification Using Medial Residual Encoder Layers [9.038707616951795]
Cancer is the second leading cause of death worldwide, responsible for over 9.5 million deaths in 2018 alone.
Brain tumors count for one out of every four cancer deaths.
We propose a system based on deep learning, containing encoder blocks. These blocks are fed with post-max-pooling features as residual learning.
Experimental evaluations of this model on a dataset consisting of 3064 MR images show 95.98% accuracy, which is better than previous studies on this database.
arXiv Detail & Related papers (2020-11-01T21:19:38Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.