Quantum Scalar Field Theory Based On Principle of Least Observability
- URL: http://arxiv.org/abs/2310.02274v2
- Date: Mon, 8 Jan 2024 04:53:06 GMT
- Title: Quantum Scalar Field Theory Based On Principle of Least Observability
- Authors: Jianhao M. Yang
- Abstract summary: We derive the Schr"odinger equation of the wave functional for the scalar fields.
The principle can be applied to derive both non-relativistic quantum mechanics and relativistic quantum scalar field theory.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently it is shown that the non-relativistic quantum formulations can be
derived from a least observability principle [36]. In this paper, we apply the
principle to massive scalar fields, and derive the Schr\"{o}dinger equation of
the wave functional for the scalar fields. The principle extends the least
action principle in classical field theory by factoring in two assumptions.
First, the Planck constant defines the minimal amount of action a field needs
to exhibit in order to be observable. Second, there are constant random field
fluctuations. A novel method is introduced to define the information metrics to
measure additional observable information due to the field fluctuations,
\added{which is then converted to the additional action through the first
assumption.} Applying the variation principle to minimize the total actions
allows us to elegantly derive the transition probability of field fluctuations,
the uncertainty relation, and the Schr\"{o}dinger equation of the wave
functional. Furthermore, by defining the information metrics for field
fluctuations using general definitions of relative entropy, we obtain a
generalized Schr\"{o}dinger equation of the wave functional that depends on the
order of relative entropy. Our results demonstrate that the extended least
action principle can be applied to derive both non-relativistic quantum
mechanics and relativistic quantum scalar field theory. We expect it can be
further used to obtain quantum theory for non-scalar fields.
Related papers
- Self-consistency, relativism and many-particle system [0.0]
Interrelation between concepts of self-consistency, relativism and many-particle systems is considered.
Paper shows that quantum systems with a time independent function of quasi-density probability in phase space are not capable to emit electromagnetic radiation.
arXiv Detail & Related papers (2024-04-21T08:38:40Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Matter relative to quantum hypersurfaces [44.99833362998488]
We extend the Page-Wootters formalism to quantum field theory.
By treating hypersurfaces as quantum reference frames, we extend quantum frame transformations to changes between classical and nonclassical hypersurfaces.
arXiv Detail & Related papers (2023-08-24T16:39:00Z) - Quantum Mechanics From Principle of Least Observability [0.0]
We show that the basic non-relativistic quantum formulations can be derived from a least observability principle.
The principle extends the least action principle from classical mechanics by factoring in two assumptions.
arXiv Detail & Related papers (2023-02-27T07:43:48Z) - Gauge-Invariant Semi-Discrete Wigner Theory [0.0]
A gauge-invariant Wigner quantum mechanical theory is obtained by applying the Weyl-Stratonovich transform to the von Neumann equation for the density matrix.
We derive the evolution equation for the linear electromagnetic case and show that it significantly simplifies for a limit dictated by the long coherence length behavior.
arXiv Detail & Related papers (2022-08-19T08:19:09Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Generalized Uncertainty Principle: from the harmonic oscillator to a QFT
toy model [0.0]
We modify the Heisenberg Uncertainty Principle into the Generalized Uncertainty Principle.
We show that the energy spectrum and eigenfunctions are affected in a non-trivial way.
We construct a quantum field theoretic toy model based on the Generalized Uncertainty Principle.
arXiv Detail & Related papers (2021-09-30T16:55:48Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z) - Symmetric Informationally Complete Measurements Identify the Irreducible
Difference between Classical and Quantum Systems [0.0]
We describe a general procedure for associating a minimal informationally-complete quantum measurement (or MIC) with a set of linearly independent post-measurement quantum states.
We prove that the representation of the Born Rule obtained from a symmetric informationally-complete measurement (or SIC) minimizes this distinction in at least two senses.
arXiv Detail & Related papers (2018-05-22T16:27:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.