論文の概要: Stochastic force inference via density estimation
- arxiv url: http://arxiv.org/abs/2310.02366v1
- Date: Tue, 3 Oct 2023 18:42:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 18:02:59.964386
- Title: Stochastic force inference via density estimation
- Title(参考訳): 密度推定による確率的力推定
- Authors: Victor Chard\`es, Suryanarayana Maddu, Michael J. Shelley
- Abstract要約: 本稿では, 自律非線形力場を推定するために, 基礎となる拡散過程に付随する確率フローに依存する手法を提案する。
本手法は,非定常データから非保守的な力を引き出すことができ,定常データに適用した場合に平衡力学を学習し,加法的および乗法的ノイズモデルの両方でそれを行うことができることを示す。
- 参考スコア(独自算出の注目度): 0.9208007322096533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Inferring dynamical models from low-resolution temporal data continues to be
a significant challenge in biophysics, especially within transcriptomics, where
separating molecular programs from noise remains an important open problem. We
explore a common scenario in which we have access to an adequate amount of
cross-sectional samples at a few time-points, and assume that our samples are
generated from a latent diffusion process. We propose an approach that relies
on the probability flow associated with an underlying diffusion process to
infer an autonomous, nonlinear force field interpolating between the
distributions. Given a prior on the noise model, we employ score-matching to
differentiate the force field from the intrinsic noise. Using relevant
biophysical examples, we demonstrate that our approach can extract
non-conservative forces from non-stationary data, that it learns equilibrium
dynamics when applied to steady-state data, and that it can do so with both
additive and multiplicative noise models.
- Abstract(参考訳): 低分解能時間データから動的モデルを推定することは、生体物理学、特に分子プログラムとノイズの分離が重要な問題である転写学において重要な課題である。
我々は,いくつかの時点において十分な量の断面サンプルにアクセスでき,そのサンプルが潜在拡散過程から生成されると仮定する一般的なシナリオを考察する。
本研究では, 分布間を補間する自律的非線形力場を推定するために, 基礎となる拡散過程に付随する確率フローに依存する手法を提案する。
ノイズモデルに先行して、本質的なノイズと力場を区別するためにスコアマッチングを用いる。
そこで本研究では,非定常データから非保存的力を抽出し,定常状態データに適用した場合に平衡力学を学習し,加法的および乗法的ノイズモデルの両方で適用可能であることを示す。
関連論文リスト
- Inferring biological processes with intrinsic noise from cross-sectional data [0.8192907805418583]
データから動的モデルを推定することは、計算生物学における重要な課題である。
確率フロー推論(PFI)は,ODE推論のアルゴリズム的容易性を維持しつつ,本質性から力を引き離すことを示す。
実例では,PFIは高次元反応ネットワークにおける正確なパラメータと力の推定を可能にし,分子ノイズによる細胞分化動態の推測を可能にする。
論文 参考訳(メタデータ) (2024-10-10T00:33:25Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
拡散モデルは、所望の特性に向けてサンプル生成を操るために、スコア関数にタスク固有の情報を注入することの恩恵を受ける。
本稿では,ガウス混合モデルの文脈における拡散モデルに対する誘導の影響を理解するための最初の理論的研究を提供する。
論文 参考訳(メタデータ) (2024-03-03T23:15:48Z) - Uncertainty quantification and out-of-distribution detection using
surjective normalizing flows [46.51077762143714]
本稿では,深層ニューラルネットワークモデルにおける分布外データセットの探索的正規化フローを用いた簡単なアプローチを提案する。
本手法は, 流通外データと流通内データとを確実に識別できることを示す。
論文 参考訳(メタデータ) (2023-11-01T09:08:35Z) - Blackout Diffusion: Generative Diffusion Models in Discrete-State Spaces [0.0]
前方拡散過程における任意の離散状態マルコフ過程の理論的定式化を開発する。
例えばBlackout Diffusion'は、ノイズからではなく、空のイメージからサンプルを生成することを学習する。
論文 参考訳(メタデータ) (2023-05-18T16:24:12Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Inference and De-Noising of Non-Gaussian Particle Distribution
Functions: A Generative Modeling Approach [0.0]
数値シミュレーションによって生成されたデータに対する推測は、一般に、粒子分布関数を回復するためにデータを結合する。
ここでは、正規化フローを用いて、雑音粒子分布関数に対する滑らかでトラクタブルな近似を学習する。
論文 参考訳(メタデータ) (2021-10-05T16:38:04Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Information-Theoretic Approximation to Causal Models [0.0]
有限標本から2つの確率変数間の因果方向と因果効果を推定する問題の解法が可能であることを示す。
X と Y のサンプルから生じる分布を高次元確率空間に埋め込む。
本稿では, 線形最適化問題を解くことにより, 因果モデル(IACM)に対する情報理論近似が可能であることを示す。
論文 参考訳(メタデータ) (2020-07-29T18:34:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。