論文の概要: FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models
- arxiv url: http://arxiv.org/abs/2310.02401v2
- Date: Fri, 3 May 2024 20:06:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 00:45:15.133718
- Title: FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models
- Title(参考訳): FT-Shield:テキスト・画像拡散モデルにおける不正な微調整に対する透かし
- Authors: Yingqian Cui, Jie Ren, Yuping Lin, Han Xu, Pengfei He, Yue Xing, Lingjuan Lyu, Wenqi Fan, Hui Liu, Jiliang Tang,
- Abstract要約: テキスト・画像拡散モデルの微調整に適した透かしシステムであるFT-Shieldを提案する。
FT-Shieldは新しい透かしの生成と検出戦略を設計することで著作権保護の課題に対処する。
- 参考スコア(独自算出の注目度): 64.89896692649589
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image generative models, especially those based on latent diffusion models (LDMs), have demonstrated outstanding ability in generating high-quality and high-resolution images from textual prompts. With this advancement, various fine-tuning methods have been developed to personalize text-to-image models for specific applications such as artistic style adaptation and human face transfer. However, such advancements have raised copyright concerns, especially when the data are used for personalization without authorization. For example, a malicious user can employ fine-tuning techniques to replicate the style of an artist without consent. In light of this concern, we propose FT-Shield, a watermarking solution tailored for the fine-tuning of text-to-image diffusion models. FT-Shield addresses copyright protection challenges by designing new watermark generation and detection strategies. In particular, it introduces an innovative algorithm for watermark generation. It ensures the seamless transfer of watermarks from training images to generated outputs, facilitating the identification of copyrighted material use. To tackle the variability in fine-tuning methods and their impact on watermark detection, FT-Shield integrates a Mixture of Experts (MoE) approach for watermark detection. Comprehensive experiments validate the effectiveness of our proposed FT-Shield.
- Abstract(参考訳): テキスト・ツー・イメージ生成モデル,特に遅延拡散モデル(LDM)に基づくモデルでは,テキスト・プロンプトから高品質で高解像度の画像を生成する能力に優れていた。
この進歩により、芸術的スタイル適応やヒューマン・フェイス・トランスファーといった特定の用途に向け、テキスト・ツー・イメージ・モデルをパーソナライズする様々な微調整手法が開発されている。
しかし、このような進歩は、特にデータを許可なくパーソナライズするために使用する場合、著作権上の懸念を提起している。
例えば、悪意のあるユーザは、微調整のテクニックを使って、アーティストのスタイルを同意なく再現することができる。
そこで本研究では,テキスト・画像拡散モデルの微調整に適した透かし方式であるFT-Shieldを提案する。
FT-Shieldは新しい透かしの生成と検出戦略を設計することで著作権保護の課題に対処する。
特に、透かし生成のための革新的なアルゴリズムを導入する。
これにより、トレーニング画像から生成された出力への透かしのシームレスな転送が保証され、著作権のある素材の使用の識別が容易になる。
微調整法における可変性と透かし検出への影響に対処するため、FT-Shieldは透かし検出のためのMixture of Experts (MoE)アプローチを統合する。
総合実験により提案したFT-Shieldの有効性が検証された。
関連論文リスト
- Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending [54.26862913139299]
我々は、ウォーターマークインフォームドブレンディング(TEAWIB)による潜伏拡散モデルに対する効果的なユーザ属性に向けた新しいフレームワークを提案する。
TEAWIBは、ユーザ固有の透かしを生成モデルにシームレスに統合する、ユニークな準備可能な構成アプローチを取り入れている。
TEAWIBの有効性を検証し、知覚的品質と帰属精度で最先端の性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-09-17T07:52:09Z) - Safe-SD: Safe and Traceable Stable Diffusion with Text Prompt Trigger for Invisible Generative Watermarking [20.320229647850017]
安定拡散(SD)モデルは一般的に画像合成とパーソナライズされた編集の分野で栄えている。
AIが作成したコンテンツを公開プラットフォームに公開することで、法的および倫理的リスクが高まる可能性がある。
本研究では,透かしを認識不能な構造に適応させる,安全かつ高追従性安定拡散フレームワーク(SafeSD)を提案する。
論文 参考訳(メタデータ) (2024-07-18T05:53:17Z) - Protect-Your-IP: Scalable Source-Tracing and Attribution against Personalized Generation [19.250673262185767]
画像著作権のソーストレーシングと属性の統一的なアプローチを提案する。
本稿では,プロアクティブ戦略とパッシブ戦略を融合した革新的な透かし属性法を提案する。
オンラインで公開されている様々なセレブの肖像画シリーズを用いて実験を行った。
論文 参考訳(メタデータ) (2024-05-26T15:14:54Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
著作権保護と不適切なコンテンツ生成は、拡散モデルの実装に課題をもたらす。
本研究では,性能ロスレスかつトレーニング不要な拡散モデル透かし手法を提案する。
論文 参考訳(メタデータ) (2024-04-07T13:30:10Z) - IMPRESS: Evaluating the Resilience of Imperceptible Perturbations
Against Unauthorized Data Usage in Diffusion-Based Generative AI [52.90082445349903]
拡散ベースの画像生成モデルは、アーティストのスタイルを模倣するアートイメージを作成したり、偽のコンテンツのためにオリジナルの画像を悪意を持って編集することができる。
知覚不能な摂動を追加することによって、元のイメージをそのような不正なデータ使用から保護する試みがいくつかなされている。
本研究では, IMPRESS という浄化摂動プラットフォームを導入し, 非受容性摂動の有効性を保護策として評価する。
論文 参考訳(メタデータ) (2023-10-30T03:33:41Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
画像と透かし(T2IW)への共同テキスト生成のための新しいタスクを提案する。
このT2IWスキームは、意味的特徴と透かし信号が画素内で互換性を持つように強制することにより、複合画像を生成する際に、画像品質に最小限のダメージを与える。
提案手法により,画像品質,透かしの可視性,透かしの堅牢性などの顕著な成果が得られた。
論文 参考訳(メタデータ) (2023-09-07T16:12:06Z) - Adaptive Blind Watermarking Using Psychovisual Image Features [8.75217589103206]
本稿では,カバー画像の異なる部分に埋め込まれた透かしの強度を適応的に決定する手法を提案する。
また, 提案手法は, 異なる種類の共通透かし攻撃において, 組込みペイロードを効果的に再構築できることを示す。
論文 参考訳(メタデータ) (2022-12-25T06:33:36Z) - A Robust Document Image Watermarking Scheme using Deep Neural Network [10.938878993948517]
本稿では,ディープニューラルネットワークを用いたエンドツーエンドの文書画像透かし方式を提案する。
特に、エンコーダとデコーダは、透かしを埋め込んで抽出するように設計されている。
文字への埋め込み変更を制限するために、テキストセンシティブな損失関数が設計されている。
論文 参考訳(メタデータ) (2022-02-26T05:28:52Z) - Protecting the Intellectual Properties of Deep Neural Networks with an
Additional Class and Steganographic Images [7.234511676697502]
本稿では,Deep Neural Network(DNN)モデルの知的特性を,追加のクラスとステガノグラフィー画像を用いて保護する手法を提案する。
我々は,ウォーターマークキー画像にユーザの指紋を埋め込むために,最下位ビット(lsb)画像ステガノグラフィを採用する。
Fashion-MNISTとCIFAR-10データセットでは,100%透かし精度と100%指紋認証成功率が得られる。
論文 参考訳(メタデータ) (2021-04-19T11:03:53Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。