論文の概要: Adaptive Blind Watermarking Using Psychovisual Image Features
- arxiv url: http://arxiv.org/abs/2212.12864v1
- Date: Sun, 25 Dec 2022 06:33:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 14:43:57.489017
- Title: Adaptive Blind Watermarking Using Psychovisual Image Features
- Title(参考訳): 心理視覚画像特徴を用いた適応ブラインド透かし
- Authors: Arezoo PariZanganeh, Ghazaleh Ghorbanzadeh, Zahra Nabizadeh
ShahreBabak, Nader Karimi, Shadrokh Samavi
- Abstract要約: 本稿では,カバー画像の異なる部分に埋め込まれた透かしの強度を適応的に決定する手法を提案する。
また, 提案手法は, 異なる種類の共通透かし攻撃において, 組込みペイロードを効果的に再構築できることを示す。
- 参考スコア(独自算出の注目度): 8.75217589103206
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the growth of editing and sharing images through the internet, the
importance of protecting the images' authorship has increased. Robust
watermarking is a known approach to maintaining copyright protection.
Robustness and imperceptibility are two factors that are tried to be maximized
through watermarking. Usually, there is a trade-off between these two
parameters. Increasing the robustness would lessen the imperceptibility of the
watermarking. This paper proposes an adaptive method that determines the
strength of the watermark embedding in different parts of the cover image
regarding its texture and brightness. Adaptive embedding increases the
robustness while preserving the quality of the watermarked image. Experimental
results also show that the proposed method can effectively reconstruct the
embedded payload in different kinds of common watermarking attacks. Our
proposed method has shown good performance compared to a recent technique.
- Abstract(参考訳): インターネットを通じて画像の編集と共有が進むにつれて、画像の作者保護の重要性が高まっている。
ロバストな透かしは著作権保護を維持するための既知のアプローチである。
堅牢性と非知覚性は、透かしによって最大化しようとする2つの要因である。
通常、これらの2つのパラメータにはトレードオフがある。
堅牢性を高めることで、透かしの感受性が低下する。
本稿では,そのテクスチャと明るさに関して,カバー画像の異なる部分に埋没する透かしの強度を決定する適応的手法を提案する。
適応埋め込みは、透かし画像の品質を維持しながら堅牢性を高める。
また, 提案手法は, 異なる種類の共通透かし攻撃において, 組込みペイロードを効果的に再構築できることを示す。
提案手法は最近の手法と比較して優れた性能を示した。
関連論文リスト
- ROBIN: Robust and Invisible Watermarks for Diffusion Models with Adversarial Optimization [15.570148419846175]
既存の透かし手法は、堅牢性と隠蔽のバランスをとるという課題に直面している。
本稿では, 透かしを積極的に隠蔽し, より強力な透かしの埋め込みを可能にするための透かし隠蔽法を提案する。
様々な拡散モデルの実験では、画像改ざんであっても透かしが検証可能であることが示されている。
論文 参考訳(メタデータ) (2024-11-06T12:14:23Z) - Robust Watermarking Using Generative Priors Against Image Editing: From Benchmarking to Advances [13.746887960091112]
大規模なテキスト・ツー・イメージモデルは、編集中に埋め込まれた透かしを歪め、著作権保護に挑戦する。
We introduced W-Bench, a first comprehensive benchmark designed to evaluate the robustness of watermarking method。
本稿では,様々な画像編集技術に対するロバスト性を大幅に向上させる透かし手法であるVINEを提案する。
論文 参考訳(メタデータ) (2024-10-24T14:28:32Z) - Certifiably Robust Image Watermark [57.546016845801134]
ジェネレーティブAIは、偽情報やプロパガンダキャンペーンの促進など、多くの社会的懸念を提起する。
ウォーターマークAI生成コンテンツは、これらの懸念に対処するための重要な技術である。
本報告では, 除去・偽造攻撃に対するロバスト性保証を保証した最初の画像透かしを提案する。
論文 参考訳(メタデータ) (2024-07-04T17:56:04Z) - Latent Watermark: Inject and Detect Watermarks in Latent Diffusion Space [7.082806239644562]
既存の手法は、画質と透かしの堅牢性のジレンマに直面している。
画像品質の優れた透かしは通常、ぼやけやJPEG圧縮のような攻撃に対して弱い堅牢性を持つ。
本稿では,潜伏拡散空間内の透かしを注入し,検出する潜伏透かしを提案する。
論文 参考訳(メタデータ) (2024-03-30T03:19:50Z) - RAW: A Robust and Agile Plug-and-Play Watermark Framework for AI-Generated Images with Provable Guarantees [33.61946642460661]
本稿ではRAWと呼ばれる堅牢でアジャイルな透かし検出フレームワークを紹介する。
我々は、透かしの存在を検出するために、透かしと共同で訓練された分類器を用いる。
このフレームワークは,透かし画像の誤分類に対する偽陽性率に関する証明可能な保証を提供する。
論文 参考訳(メタデータ) (2024-01-23T22:00:49Z) - FT-Shield: A Watermark Against Unauthorized Fine-tuning in Text-to-Image Diffusion Models [64.89896692649589]
テキスト・画像拡散モデルの微調整に適した透かしシステムであるFT-Shieldを提案する。
FT-Shieldは新しい透かしの生成と検出戦略を設計することで著作権保護の課題に対処する。
論文 参考訳(メタデータ) (2023-10-03T19:50:08Z) - T2IW: Joint Text to Image & Watermark Generation [74.20148555503127]
画像と透かし(T2IW)への共同テキスト生成のための新しいタスクを提案する。
このT2IWスキームは、意味的特徴と透かし信号が画素内で互換性を持つように強制することにより、複合画像を生成する際に、画像品質に最小限のダメージを与える。
提案手法により,画像品質,透かしの可視性,透かしの堅牢性などの顕著な成果が得られた。
論文 参考訳(メタデータ) (2023-09-07T16:12:06Z) - Certified Neural Network Watermarks with Randomized Smoothing [64.86178395240469]
本稿では,ディープラーニングモデルのための認証型透かし手法を提案する。
我々の透かしは、モデルパラメータが特定のl2しきい値以上変更されない限り、取り外し不可能であることが保証されている。
私たちの透かしは、従来の透かし法に比べて経験的に頑丈です。
論文 参考訳(メタデータ) (2022-07-16T16:06:59Z) - Watermarking Images in Self-Supervised Latent Spaces [75.99287942537138]
我々は,自己教師型アプローチに照らして,事前学習した深層ネットワークに基づく透かし手法を再検討する。
我々は、マーク時間におけるデータの増大を利用して、マークとバイナリのメッセージをその潜在空間に埋め込む方法を提案する。
論文 参考訳(メタデータ) (2021-12-17T15:52:46Z) - Robust Watermarking using Diffusion of Logo into Autoencoder Feature
Maps [10.072876983072113]
本稿では,透かしのためのエンドツーエンドネットワークを提案する。
画像の内容に基づいて,畳み込みニューラルネットワーク(CNN)を用いて埋め込み強度を制御する。
異なる画像処理攻撃は、モデルの堅牢性を改善するためにネットワーク層としてシミュレートされる。
論文 参考訳(メタデータ) (2021-05-24T05:18:33Z) - Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal
Attack for DNN Models [72.9364216776529]
我々は異なる視点から新しい透かし除去攻撃を提案する。
我々は、知覚不可能なパターン埋め込みと空間レベルの変換を組み合わせることで、単純だが強力な変換アルゴリズムを設計する。
我々の攻撃は、非常に高い成功率で最先端の透かしソリューションを回避できる。
論文 参考訳(メタデータ) (2020-09-18T09:14:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。