Parameterized Convex Minorant for Objective Function Approximation in
Amortized Optimization
- URL: http://arxiv.org/abs/2310.02519v3
- Date: Fri, 10 Nov 2023 07:49:04 GMT
- Title: Parameterized Convex Minorant for Objective Function Approximation in
Amortized Optimization
- Authors: Jinrae Kim, Youdan Kim
- Abstract summary: A convex minorant (PCM) method is proposed for the approximation of the objective function in amortized optimization.
In the proposed method, the objective function approximator is expressed by the sum of a PCM and a nonnegative gap function, where the objective approximator is bounded from below by the convex PCM in the PCM.
The proposed objective approximator is a universal approximator for the PCM, and globalexpr of the PCM attains the global minimum of the objective function approximator.
- Score: 0.897438370260135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parameterized convex minorant (PCM) method is proposed for the approximation
of the objective function in amortized optimization. In the proposed method,
the objective function approximator is expressed by the sum of a PCM and a
nonnegative gap function, where the objective function approximator is bounded
from below by the PCM convex in the optimization variable. The proposed
objective function approximator is a universal approximator for continuous
functions, and the global minimizer of the PCM attains the global minimum of
the objective function approximator. Therefore, the global minimizer of the
objective function approximator can be obtained by a single convex
optimization. As a realization of the proposed method, extended parameterized
log-sum-exp network is proposed by utilizing a parameterized log-sum-exp
network as the PCM. Numerical simulation is performed for parameterized
non-convex objective function approximation and for learning-based nonlinear
model predictive control to demonstrate the performance and characteristics of
the proposed method. The simulation results support that the proposed method
can be used to learn objective functions and to find a global minimizer
reliably and quickly by using convex optimization algorithms.
Related papers
- Global Optimization of Gaussian Process Acquisition Functions Using a Piecewise-Linear Kernel Approximation [2.3342885570554652]
We introduce a piecewise approximation for process kernels and a corresponding MIQP representation for acquisition functions.
We empirically demonstrate the framework on synthetic functions, constrained benchmarks, and hyper tuning tasks.
arXiv Detail & Related papers (2024-10-22T10:56:52Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Smoothing Policy Iteration for Zero-sum Markov Games [9.158672246275348]
We propose the smoothing policy robustness (SPI) algorithm to solve the zero-sum MGs approximately.
Specially, the adversarial policy is served as the weight function to enable an efficient sampling over action spaces.
We also propose a model-based algorithm called Smooth adversarial Actor-critic (SaAC) by extending SPI with the function approximations.
arXiv Detail & Related papers (2022-12-03T14:39:06Z) - Distributed stochastic proximal algorithm with random reshuffling for
non-smooth finite-sum optimization [28.862321453597918]
Non-smooth finite-sum minimization is a fundamental problem in machine learning.
This paper develops a distributed proximal-gradient algorithm with random reshuffling to solve the problem.
arXiv Detail & Related papers (2021-11-06T07:29:55Z) - Implicit Rate-Constrained Optimization of Non-decomposable Objectives [37.43791617018009]
We consider a family of constrained optimization problems arising in machine learning.
Our key idea is to formulate a rate-constrained optimization that expresses the threshold parameter as a function of the model parameters.
We show how the resulting optimization problem can be solved using standard gradient based methods.
arXiv Detail & Related papers (2021-07-23T00:04:39Z) - Finding Global Minima via Kernel Approximations [90.42048080064849]
We consider the global minimization of smooth functions based solely on function evaluations.
In this paper, we consider an approach that jointly models the function to approximate and finds a global minimum.
arXiv Detail & Related papers (2020-12-22T12:59:30Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Composition of kernel and acquisition functions for High Dimensional
Bayesian Optimization [0.1749935196721634]
We use the addition-ality of the objective function into mapping both the kernel and the acquisition function of the Bayesian Optimization.
This ap-proach makes more efficient the learning/updating of the probabilistic surrogate model.
Results are presented for real-life application, that is the control of pumps in urban water distribution systems.
arXiv Detail & Related papers (2020-03-09T15:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.