論文の概要: Leveraging Temporal Graph Networks Using Module Decoupling
- arxiv url: http://arxiv.org/abs/2310.02721v2
- Date: Thu, 6 Jun 2024 14:11:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-08 00:39:36.727882
- Title: Leveraging Temporal Graph Networks Using Module Decoupling
- Title(参考訳): モジュールデカップリングを用いた時間グラフネットワークの活用
- Authors: Or Feldman, Chaim Baskin,
- Abstract要約: バッチを使用してモデルを頻繁に更新可能なデカップリング戦略を提案する。
我々は,動的グラフを学習するための非常に効率的なモデルであるLDTGN(Lightweight Decoupled Temporal Graph Network)を開発した。
本手法は, モデル更新率の急激なベンチマークにおいて, 従来の手法よりも20%以上優れていた。
- 参考スコア(独自算出の注目度): 3.115375810642661
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Modern approaches for learning on dynamic graphs have adopted the use of batches instead of applying updates one by one. The use of batches allows these techniques to become helpful in streaming scenarios where updates to graphs are received at extreme speeds. Using batches, however, forces the models to update infrequently, which results in the degradation of their performance. In this work, we suggest a decoupling strategy that enables the models to update frequently while using batches. By decoupling the core modules of temporal graph networks and implementing them using a minimal number of learnable parameters, we have developed the Lightweight Decoupled Temporal Graph Network (LDTGN), an exceptionally efficient model for learning on dynamic graphs. LDTG was validated on various dynamic graph benchmarks, providing comparable or state-of-the-art results with significantly higher throughput than previous art. Notably, our method outperforms previous approaches by more than 20\% on benchmarks that require rapid model update rates, such as USLegis or UNTrade. The code to reproduce our experiments is available at \href{https://orfeld415.github.io/module-decoupling}{this http url}.
- Abstract(参考訳): 動的グラフを学習するための現代的なアプローチでは、更新をひとつずつ適用するのではなく、バッチの利用が採用されている。
バッチを使用することで,グラフ更新を極端な速度で受信するストリーミングシナリオにおいて,これらのテクニックが有効になる。
しかしバッチを使用することで、モデルを頻繁に更新する必要がなくなり、結果としてパフォーマンスが低下する。
本研究では,バッチを用いてモデルを頻繁に更新可能なデカップリング戦略を提案する。
時間グラフネットワークのコアモジュールを分離し,最小限の学習可能なパラメータを用いて実装することにより,動的グラフを学習するための極めて効率的なモデルである軽量デカップリング型テンポラルグラフネットワーク(LDTGN)を開発した。
LDTGは、様々な動的グラフベンチマークで検証され、従来の技術よりもはるかに高いスループットで、同等または最先端の結果が得られた。
特に,USLegisやUNTradeのような高速なモデル更新レートを必要とするベンチマークでは,従来の手法よりも20%以上優れていた。
実験を再現するコードは \href{https://orfeld415.github.io/module-decoupling}{this http url} で公開されている。
関連論文リスト
- GLBench: A Comprehensive Benchmark for Graph with Large Language Models [41.89444363336435]
GLBenchは、教師付きシナリオとゼロショットシナリオの両方でGraphLLMメソッドを評価するための最初の包括的なベンチマークである。
GLBenchはグラフニューラルネットワークのような従来のベースラインとともに、GraphLLMメソッドのさまざまなカテゴリを公平かつ徹底的に評価する。
論文 参考訳(メタデータ) (2024-07-10T08:20:47Z) - Temporal Graph Benchmark for Machine Learning on Temporal Graphs [54.52243310226456]
テンポラルグラフベンチマーク(TGB)は、困難で多様なベンチマークデータセットのコレクションである。
各データセットをベンチマークし、共通のモデルのパフォーマンスがデータセット間で大きく異なることを発見した。
TGBは、再現可能でアクセス可能な時間グラフ研究のための自動機械学習パイプラインを提供する。
論文 参考訳(メタデータ) (2023-07-03T13:58:20Z) - Instant Representation Learning for Recommendation over Large Dynamic
Graphs [29.41179019520622]
動的多重多元グラフのための新しいグラフニューラルネットワークSUPAを提案する。
新しいエッジごとに、SUPAは影響のあるサブグラフをサンプリングし、2つの対話ノードの表現を更新し、その相互作用情報をサンプリングされたサブグラフに伝達する。
SuPAをオンラインでインクリメンタルにトレーニングするために、大規模な動的グラフのシングルパストレーニングのための効率的なワークフローであるInsLearnを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:10Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
これらの問題に対処するための一般的な学習可能なグラフマッチング法を提案する。
提案手法は,複数のMOTデータセット上での最先端性能を実現する。
画像マッチングでは,一般的な屋内データセットであるScanNetで最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-03-27T17:39:00Z) - Towards Better Dynamic Graph Learning: New Architecture and Unified
Library [29.625205125350313]
DyGFormerは、動的グラフ学習のためのTransformerベースのアーキテクチャである。
DyGLibは、標準のトレーニングパイプラインとコーディングインターフェースを備えた統一ライブラリである。
論文 参考訳(メタデータ) (2023-03-23T05:27:32Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
静的および動的グラフ学習ニューラルネットワーク(GL)という新しいフレームワークを提案する。
モデルはそれぞれ、データから静的グラフ行列と動的グラフ行列を取得し、長期パターンと短期パターンをモデル化する。
ほぼすべてのデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-12-06T08:19:15Z) - Learnable Graph Matching: Incorporating Graph Partitioning with Deep
Feature Learning for Multiple Object Tracking [58.30147362745852]
フレーム間のデータアソシエーションは、Multiple Object Tracking(MOT)タスクの中核にある。
既存の手法は、主にトラックレットとフレーム内検出の間のコンテキスト情報を無視する。
そこで本研究では,学習可能なグラフマッチング手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T08:58:45Z) - Combining Label Propagation and Simple Models Out-performs Graph Neural
Networks [52.121819834353865]
多くの標準的なトランスダクティブノード分類ベンチマークでは、最先端のGNNの性能を超えたり、一致させることができる。
これをC&S(Correct and Smooth)と呼ぶ。
我々のアプローチは、様々なベンチマークで最先端のGNNの性能を上回るか、ほぼ一致している。
論文 参考訳(メタデータ) (2020-10-27T02:10:52Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
グラフ畳み込みネットワーク(GCN)は、最先端のグラフベースの表現学習モデルである。
本稿では、GCNベースの協調フィルタリング(CF)ベースのレコメンダシステム(RS)について再検討する。
単純なグラフ畳み込みネットワークの理論と整合して,非線形性を取り除くことで推奨性能が向上することを示す。
本稿では,ユーザ・イテム相互作用モデリングを用いたCF用に特別に設計された残差ネットワーク構造を提案する。
論文 参考訳(メタデータ) (2020-01-28T04:41:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。