Graph Neural Networks and Time Series as Directed Graphs for Quality
Recognition
- URL: http://arxiv.org/abs/2310.02774v1
- Date: Wed, 4 Oct 2023 12:43:38 GMT
- Title: Graph Neural Networks and Time Series as Directed Graphs for Quality
Recognition
- Authors: Angelica Simonetti and Ferdinando Zanchetta
- Abstract summary: We see time series as directed graphs, so that their topology encodes time dependencies.
We develop two distinct Geometric Deep Learning models, a supervised classifier and an autoencoder-like model for signal reconstruction.
- Score: 40.48245609592348
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Graph Neural Networks (GNNs) are becoming central in the study of time
series, coupled with existing algorithms as Temporal Convolutional Networks and
Recurrent Neural Networks. In this paper, we see time series themselves as
directed graphs, so that their topology encodes time dependencies and we start
to explore the effectiveness of GNNs architectures on them. We develop two
distinct Geometric Deep Learning models, a supervised classifier and an
autoencoder-like model for signal reconstruction. We apply these models on a
quality recognition problem.
Related papers
- DTFormer: A Transformer-Based Method for Discrete-Time Dynamic Graph Representation Learning [38.53424185696828]
The representation learning of Discrete-Time Dynamic Graphs (DTDGs) has been extensively applied to model the dynamics of temporally changing entities and their evolving connections.
This paper introduces a novel representation learning method DTFormer for DTDGs, pivoting from the traditional GNN+RNN framework to a Transformer-based architecture.
arXiv Detail & Related papers (2024-07-26T05:46:23Z) - On The Temporal Domain of Differential Equation Inspired Graph Neural
Networks [14.779420473274737]
We show that our model, called TDE-GNN, can capture a wide range of temporal dynamics that go beyond typical first or second-order methods.
We demonstrate the benefit of learning the temporal dependencies using our method rather than using pre-defined temporal dynamics on several graph benchmarks.
arXiv Detail & Related papers (2024-01-20T01:12:57Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Graph-based Multi-ODE Neural Networks for Spatio-Temporal Traffic
Forecasting [8.832864937330722]
Long-range traffic forecasting remains a challenging task due to the intricate and extensive-temporal correlations observed in traffic networks.
In this paper, we propose a architecture called Graph-based Multi-ODE Neural Networks (GRAM-ODE) which is designed with multiple connective ODE-GNN modules to learn better representations.
Our extensive set of experiments conducted on six real-world datasets demonstrate the superior performance of GRAM-ODE compared with state-of-the-art baselines.
arXiv Detail & Related papers (2023-05-30T02:10:42Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
We design a new model named PoGeVon which leverages variational autoencoder (VAE) to predict missing values over both node time series features and graph structures.
Experiment results demonstrate the effectiveness of our model over baselines.
arXiv Detail & Related papers (2023-05-29T21:11:34Z) - Spatio-Temporal Graph Neural Networks: A Survey [1.9087335681007478]
Temporal Graph Neural Networks are extension of Graph Neural Networks that takes the time factor into account.
This survey discusses interesting topics related to Spatio temporal Graph Neural Networks, including algorithms, application, and open challenges.
arXiv Detail & Related papers (2023-01-25T13:17:46Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.