論文の概要: Learning-Aided Warmstart of Model Predictive Control in Uncertain
Fast-Changing Traffic
- arxiv url: http://arxiv.org/abs/2310.02918v1
- Date: Wed, 4 Oct 2023 16:00:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 14:21:54.113569
- Title: Learning-Aided Warmstart of Model Predictive Control in Uncertain
Fast-Changing Traffic
- Title(参考訳): 不確定な高速交通におけるモデル予測制御の学習支援ウォームスタート
- Authors: Mohamed-Khalil Bouzidi, Yue Yao, Daniel Goehring, Joerg Reichardt
- Abstract要約: 我々は、ネットワークベースのマルチモーダル予測器を用いて、自律走行車軌道の提案を生成する。
このアプローチにより,複数の局所最小値の同定が可能となり,初期推定精度が向上する。
我々はモンテカルロシミュレーションによるアプローチを異なるシナリオで検証する。
- 参考スコア(独自算出の注目度): 2.0965639599405366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model Predictive Control lacks the ability to escape local minima in
nonconvex problems. Furthermore, in fast-changing, uncertain environments, the
conventional warmstart, using the optimal trajectory from the last timestep,
often falls short of providing an adequately close initial guess for the
current optimal trajectory. This can potentially result in convergence failures
and safety issues. Therefore, this paper proposes a framework for
learning-aided warmstarts of Model Predictive Control algorithms. Our method
leverages a neural network based multimodal predictor to generate multiple
trajectory proposals for the autonomous vehicle, which are further refined by a
sampling-based technique. This combined approach enables us to identify
multiple distinct local minima and provide an improved initial guess. We
validate our approach with Monte Carlo simulations of traffic scenarios.
- Abstract(参考訳): モデル予測制御は、非凸問題において局所ミニマを逃れる能力に欠ける。
さらに、急激で不確実な環境では、従来のウォームスタートは、最終段階から最適軌跡を用いており、しばしば現在の最適軌跡を適切に正確に推定することができない。
これは収束障害や安全性の問題を引き起こす可能性がある。
そこで本研究では,モデル予測制御アルゴリズムのウォームスタート学習のためのフレームワークを提案する。
提案手法は,ニューラルネットワークに基づくマルチモーダル予測器を用いて,サンプリング手法によりさらに改良された自律走行車のための複数の軌道提案を生成する。
この組み合わせにより、複数の異なる局所最小値を同定し、初期推定を改良することができる。
交通シナリオのモンテカルロシミュレーションによるアプローチを検証する。
関連論文リスト
- Motion Forecasting via Model-Based Risk Minimization [8.766024024417316]
複数モデルの予測に基づく軌道予測に適用可能な新しいサンプリング手法を提案する。
まず、予測確率に基づく従来のサンプリングは、モデル間のアライメントの欠如により性能を低下させることができることを示す。
基礎学習者として最先端モデルを用いて,最適軌道サンプリングのための多種多様な効果的なアンサンブルを構築した。
論文 参考訳(メタデータ) (2024-09-16T09:03:28Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
学習可能なクエリの集合を用いて、占有された場所とクラスを同時に予測するフレームワークを提案する。
OPUSには、モデルパフォーマンスを高めるための非自明な戦略が組み込まれている。
最も軽量なモデルではOcc3D-nuScenesデータセットの2倍 FPS に優れたRayIoUが得られる一方、最も重いモデルは6.1 RayIoUを上回ります。
論文 参考訳(メタデータ) (2024-09-14T07:44:22Z) - Tractable Joint Prediction and Planning over Discrete Behavior Modes for
Urban Driving [15.671811785579118]
自己回帰閉ループモデルのパラメータ化は,再学習を伴わずに可能であることを示す。
離散潜在モード上での完全反応性閉ループ計画を提案する。
当社のアプローチは、CARLAにおける従来の最先端技術よりも、高密度なトラフィックシナリオに挑戦する上で優れています。
論文 参考訳(メタデータ) (2024-03-12T01:00:52Z) - Model Checking for Closed-Loop Robot Reactive Planning [0.0]
モデル検査を用いて、ディファレンシャルドライブホイールロボットの多段階計画を作成することにより、即時危険を回避できることを示す。
簡単な生物エージェントのエゴセントリックな反応を反映した,小型で汎用的なモデル検査アルゴリズムを用いて,リアルタイムで計画を生成する。
論文 参考訳(メタデータ) (2023-11-16T11:02:29Z) - Practical Probabilistic Model-based Deep Reinforcement Learning by
Integrating Dropout Uncertainty and Trajectory Sampling [7.179313063022576]
本稿では,ニューラルネットワーク上に構築された現在の確率モデルベース強化学習(MBRL)の予測安定性,予測精度,制御能力について述べる。
トラジェクトリサンプリング(DPETS)を用いた新しいアプローチであるドロップアウト型確率アンサンブルを提案する。
論文 参考訳(メタデータ) (2023-09-20T06:39:19Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
本研究では、学習したガウス過程を利用して人間の運転行動を予測する自動運転車のモデル予測制御手法を提案する。
マルチモード予測制御アプローチは、人間のドライバーの意図を考察する。
論文 参考訳(メタデータ) (2023-03-08T17:14:57Z) - Entropic Neural Optimal Transport via Diffusion Processes [105.34822201378763]
本稿では,連続確率分布間のエントロピー最適輸送(EOT)計画を計算するための新しいアルゴリズムを提案する。
提案アルゴリズムは,シュリンガーブリッジ問題(Schr"odinger Bridge problem)として知られるEOTの動的バージョンのサドル点再構成に基づく。
大規模EOTの従来の手法とは対照的に,我々のアルゴリズムはエンドツーエンドであり,単一の学習ステップで構成されている。
論文 参考訳(メタデータ) (2022-11-02T14:35:13Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
本稿では,現在の状況に適応してパーソナライズされたランキングを提供する自動アルゴリズムの設計に焦点を当てる。
前者はSAROSと呼ばれる新しいアルゴリズムを提案し,インタラクションの順序を学習するためのフィードバックの種類を考慮に入れている。
提案手法は, 電力網の故障検出に対する初期アプローチと比較して, 統計的に有意な結果を示す。
論文 参考訳(メタデータ) (2022-05-13T21:09:41Z) - Early Lane Change Prediction for Automated Driving Systems Using
Multi-Task Attention-based Convolutional Neural Networks [8.60064151720158]
レーンチェンジ(英: Lane Change、LC)は、高速道路の運転において、安全上重要な手段の一つである。
自動走行システムの 安全で快適な運転には 確実な予測が不可欠だ
本稿では,LCの操作可能性と時間-車線変化を同時に推定する新しいマルチタスクモデルを提案する。
論文 参考訳(メタデータ) (2021-09-22T13:59:27Z) - Reinforcement Learning for Low-Thrust Trajectory Design of
Interplanetary Missions [77.34726150561087]
本稿では, 惑星間軌道のロバスト設計における強化学習の適用について検討する。
最先端アルゴリズムのオープンソース実装が採用されている。
その結果得られた誘導制御ネットワークは、堅牢な名目的軌道と関連する閉ループ誘導法の両方を提供する。
論文 参考訳(メタデータ) (2020-08-19T15:22:15Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。