論文の概要: Entropic Neural Optimal Transport via Diffusion Processes
- arxiv url: http://arxiv.org/abs/2211.01156v3
- Date: Wed, 1 Nov 2023 13:46:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 18:32:11.303743
- Title: Entropic Neural Optimal Transport via Diffusion Processes
- Title(参考訳): 拡散過程によるエントロピーニューラル最適輸送
- Authors: Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry Vetrov,
Evgeny Burnaev
- Abstract要約: 本稿では,連続確率分布間のエントロピー最適輸送(EOT)計画を計算するための新しいアルゴリズムを提案する。
提案アルゴリズムは,シュリンガーブリッジ問題(Schr"odinger Bridge problem)として知られるEOTの動的バージョンのサドル点再構成に基づく。
大規模EOTの従来の手法とは対照的に,我々のアルゴリズムはエンドツーエンドであり,単一の学習ステップで構成されている。
- 参考スコア(独自算出の注目度): 105.34822201378763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel neural algorithm for the fundamental problem of computing
the entropic optimal transport (EOT) plan between continuous probability
distributions which are accessible by samples. Our algorithm is based on the
saddle point reformulation of the dynamic version of EOT which is known as the
Schr\"odinger Bridge problem. In contrast to the prior methods for large-scale
EOT, our algorithm is end-to-end and consists of a single learning step, has
fast inference procedure, and allows handling small values of the entropy
regularization coefficient which is of particular importance in some applied
problems. Empirically, we show the performance of the method on several
large-scale EOT tasks.
https://github.com/ngushchin/EntropicNeuralOptimalTransport
- Abstract(参考訳): 本稿では,サンプルからアクセス可能な連続確率分布間のエントロピー最適輸送(EOT)計画の基本的な問題に対するニューラルアルゴリズムを提案する。
提案アルゴリズムは,シュリンガーブリッジ問題(Schr\odinger Bridge problem)として知られるEOTの動的バージョンのサドル点再構成に基づく。
大規模eotの先行手法とは対照的に,本アルゴリズムはエンドツーエンドであり,単一の学習ステップから成り,高速な推論手順を持ち,応用問題において特に重要となるエントロピー正規化係数の小さい値を扱うことができる。
実験では,複数の大規模eotタスクにおけるメソッドの性能を示す。
https://github.com/ngushchin/entropicaloptimaltransport
関連論文リスト
- Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian Inference [1.740133468405535]
静的および条件付き最適輸送(COT)問題の解を近似する2つのニューラルネットワークアプローチを提案する。
我々は、ベンチマークデータセットとシミュレーションに基づく逆問題を用いて、両アルゴリズムを競合する最先端のアプローチと比較する。
論文 参考訳(メタデータ) (2023-10-25T20:20:09Z) - Energy-Guided Continuous Entropic Barycenter Estimation for General Costs [95.33926437521046]
任意のOTコスト関数に対して連続的エントロピーOT(EOT)バリセンタを近似する新しいアルゴリズムを提案する。
本手法は、弱いOTに基づくEOT問題の二重再構成に基づいている。
論文 参考訳(メタデータ) (2023-10-02T11:24:36Z) - Accelerated primal-dual methods with enlarged step sizes and operator
learning for nonsmooth optimal control problems [3.1006429989273063]
本稿では,異なる種類の変数を個別に扱える原始双対法の適用に焦点をあてる。
ステップサイズが大きい高速化された原始双対法では、元の原始双対法を数値的に高速化しながら、その収束を厳密に証明することができる。
演算子学習アクセラレーションのために、関連するPDEのためのディープニューラルネットワークサロゲートモデルを構築する。
論文 参考訳(メタデータ) (2023-07-01T10:39:07Z) - Light Unbalanced Optimal Transport [69.18220206873772]
既存の解法は、原理に基づいているか、複数のニューラルネットワークを含む複雑な最適化目標を重み付けしている。
我々は,この解法がUEOT解の普遍近似を提供し,一般化限界を得ることを示す。
論文 参考訳(メタデータ) (2023-03-14T15:44:40Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Iterative-Free Quantum Approximate Optimization Algorithm Using Neural
Networks [20.051757447006043]
そこで本稿では,ニューラルネットワークを用いて与えられた問題に対して,より優れたパラメータを求めるための実践的手法を提案する。
我々の手法は一貫して収束し、最終結果も最高速である。
論文 参考訳(メタデータ) (2022-08-21T14:05:11Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Learning Cost Functions for Optimal Transport [44.64193016158591]
逆最適輸送(英: Inverse optimal transport, OT)とは、観測された輸送計画またはそのサンプルから、OTのコスト関数を学習する問題を指す。
逆OT問題の制約のない凸最適化式を導出し、任意のカスタマイズ可能な正規化によりさらに拡張することができる。
論文 参考訳(メタデータ) (2020-02-22T07:27:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。