Dual Conic Proxies for AC Optimal Power Flow
- URL: http://arxiv.org/abs/2310.02969v2
- Date: Tue, 26 Mar 2024 14:00:59 GMT
- Title: Dual Conic Proxies for AC Optimal Power Flow
- Authors: Guancheng Qiu, Mathieu Tanneau, Pascal Van Hentenryck,
- Abstract summary: No existing learning-based approach can provide valid dual bounds for AC-OPF.
This paper addresses this gap by training optimization proxies for a convex relaxation of AC-OPF.
The paper combines this new architecture with a self-supervised learning scheme, which alleviates the need for costly training data generation.
- Score: 16.02181642119643
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, there has been significant interest in the development of machine learning-based optimization proxies for AC Optimal Power Flow (AC-OPF). Although significant progress has been achieved in predicting high-quality primal solutions, no existing learning-based approach can provide valid dual bounds for AC-OPF. This paper addresses this gap by training optimization proxies for a convex relaxation of AC-OPF. Namely, the paper considers a second-order cone (SOC) relaxation of AC-OPF, and proposes \revision{a novel architecture} that embeds a fast, differentiable (dual) feasibility recovery, thus providing valid dual bounds. The paper combines this new architecture with a self-supervised learning scheme, which alleviates the need for costly training data generation. Extensive numerical experiments on medium- and large-scale power grids demonstrate the efficiency and scalability of the proposed methodology.
Related papers
- A-FedPD: Aligning Dual-Drift is All Federated Primal-Dual Learning Needs [57.35402286842029]
We propose a novel Aligned Dual Dual (A-FedPD) method, which constructs virtual dual align global and local clients.
We provide a comprehensive analysis of the A-FedPD method's efficiency for those protracted unicipated security consensus.
arXiv Detail & Related papers (2024-09-27T17:00:32Z) - GP CC-OPF: Gaussian Process based optimization tool for
Chance-Constrained Optimal Power Flow [54.94701604030199]
The Gaussian Process (GP) based Chance-Constrained Optimal Flow (CC-OPF) is an open-source Python code for economic dispatch (ED) problem in power grids.
The developed tool presents a novel data-driven approach based on the CC-OP model for solving the large regression problem with a trade-off between complexity and accuracy.
arXiv Detail & Related papers (2023-02-16T17:59:06Z) - Unsupervised Deep Learning for AC Optimal Power Flow via Lagrangian
Duality [3.412750324146571]
AC optimal power flow is a fundamental optimization problem in power system analysis.
Deep learning based approaches have gained intensive attention to conduct the time-consuming training process offline.
This paper proposes an end-to-end unsupervised learning based framework for AC-OPF.
arXiv Detail & Related papers (2022-12-07T22:26:45Z) - Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian
Processes [57.70237375696411]
The paper proposes a fast data-driven setup that uses the sparse and hybrid Gaussian processes (GP) framework to model the power flow equations with input uncertainty.
We advocate the efficiency of the proposed approach by a numerical study over multiple IEEE test cases showing up to two times faster and more accurate solutions.
arXiv Detail & Related papers (2022-08-30T09:27:59Z) - OPF-Learn: An Open-Source Framework for Creating Representative AC
Optimal Power Flow Datasets [0.0]
This paper develops the OPF-Learn package for Julia and Python, which uses a computationally efficient approach to create representative datasets.
The framework is shown to generate datasets that are more representative of the entire feasible space versus traditional techniques seen in the literature.
arXiv Detail & Related papers (2021-11-01T19:35:09Z) - Spatial Network Decomposition for Fast and Scalable AC-OPF Learning [14.057864778644776]
The proposed approach is a 2-stage methodology that exploits a spatial decomposition of the power network that is viewed as a set of regions.
Within a short training time, the approach predicts AC-OPF solutions with very high fidelity and minor constraint violations.
Results show that the predictions can seed a load flow optimization to return a feasible solution within 0.03% of the AC-OPF objective.
arXiv Detail & Related papers (2021-01-17T20:09:11Z) - Load Embeddings for Scalable AC-OPF Learning [46.79747973916068]
AC Optimal Power Flow (AC-OPF) is a building block in power system optimization.
Recent work has shown that deep learning can be effective in providing highly accurate approximations of AC-OPF.
This paper addresses these scalability limitations and proposes a load embedding scheme using a 3-step approach.
arXiv Detail & Related papers (2021-01-11T15:28:38Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - High-Fidelity Machine Learning Approximations of Large-Scale Optimal
Power Flow [49.2540510330407]
AC-OPF is a key building block in many power system applications.
Motivated by increased penetration of renewable sources, this paper explores deep learning to deliver efficient approximations to the AC-OPF.
arXiv Detail & Related papers (2020-06-29T20:22:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.