Superdiffusive Transport in Quasi-Particle Dephasing Models
- URL: http://arxiv.org/abs/2310.03069v2
- Date: Fri, 15 Dec 2023 02:17:21 GMT
- Title: Superdiffusive Transport in Quasi-Particle Dephasing Models
- Authors: Yu-Peng Wang, Chen Fang, and Jie Ren
- Abstract summary: We show that quasi-particle dephasing can induce superdiffusive transport.
Superdiffusion arises from nodal points within the momentum distribution of local dephasing quasi-particles.
- Score: 7.470473448588115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Investigating the behavior of noninteracting fermions subjected to local
dephasing, we reveal that quasi-particle dephasing can induce superdiffusive
transport. This superdiffusion arises from nodal points within the momentum
distribution of local dephasing quasi-particles, leading to asymptotic
long-lived modes. By studying the dynamics of the Wigner function, we
rigorously elucidate how the dynamics of these enduring modes give rise to
L\'evy walk processes, a renowned mechanism underlying superdiffusion
phenomena. Our research demonstrates the controllability of dynamical scaling
exponents by selecting quasi-particles and extends its applicability to higher
dimensions, underlining the pervasive nature of superdiffusion in dephasing
models.
Related papers
- Neural Message Passing Induced by Energy-Constrained Diffusion [79.9193447649011]
We propose an energy-constrained diffusion model as a principled interpretable framework for understanding the mechanism of MPNNs.
We show that the new model can yield promising performance for cases where the data structures are observed (as a graph), partially observed or completely unobserved.
arXiv Detail & Related papers (2024-09-13T17:54:41Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
This work introduces a 4D generative diffusion model and a physics-informed guidance technique that enables the generation of realistic sequences of flow states.
Our findings indicate that the proposed method can successfully sample entire subsequences from the turbulent manifold.
This advancement opens doors for the application of generative modeling in analyzing the temporal evolution of turbulent flows.
arXiv Detail & Related papers (2024-06-17T10:21:01Z) - Dynamic Generation of Superflow in a Fermionic Ring through Phase Imprinting [4.797438179753422]
We study the dynamic generation of persistent current by phase imprinting fermionic atoms in a ring geometry.
We show that as the condensate is tuned toward the Bose-Einstein-condensate side of the Feshbach resonance, the azimuthal density distribution becomes less susceptible to the phase imprinting potential.
arXiv Detail & Related papers (2024-06-01T03:34:52Z) - Emergence of a quasi-ergodic steady state in a dissipative Tavis-Cummings array [0.0]
We show the emergence of a quasi-steady state in a dissipative environment that exhibits intriguing ergodic behavior.
The phase space dynamics reveals a fascinating ergodic behavior in presence of dissipation.
We discuss the relevance of our findings in the current experiments.
arXiv Detail & Related papers (2023-10-19T14:30:21Z) - Oscillating Fields, Emergent Gravity and Particle Traps [55.2480439325792]
We study the large-scale dynamics of charged particles in a rapidly oscillating field and formulate its classical and quantum effective theory description.
Remarkably, the action models the effects of general relativity on the motion of nonrelativistic particles, with the values of the emergent curvature and speed of light determined by the field spatial distribution and frequency.
arXiv Detail & Related papers (2023-10-03T18:00:02Z) - Family-Vicsek dynamical scaling and Kardar-Parisi-Zhang-like
superdiffusive growth of surface roughness in a driven one-dimensional
quasiperiodic model [0.0]
We investigate the out-of-equilibrium dynamics of spinless fermions in a one-dimensional quasiperiodic model with and without a periodic driving.
In absence of periodic driving, the model is interestingly shown to host a subdiffusive critical phase.
We construct an effective Floquet Hamiltonian, which qualitatively captures this feature occurring in the driven model.
arXiv Detail & Related papers (2023-07-07T19:30:05Z) - Observation of subdiffusive dynamic scaling in a driven and disordered
Bose gas [0.0]
We study the dynamics of a tuneable box-trapped Bose gas under strong periodic forcing.
In absence of interparticle interactions, the interplay of the drive and disorder results in an isotropic nonthermal momentum distribution.
arXiv Detail & Related papers (2023-04-13T17:50:22Z) - Kagome qubit ice [55.73970798291771]
Topological phases of spin liquids with constrained disorder can host a kinetics of fractionalized excitations.
We present a realization of kagome spin ice in the superconducting qubits of a quantum annealer.
We show evidence of both the Ice-I phase and an unconventional field-induced Ice-II phase.
arXiv Detail & Related papers (2023-01-04T23:46:48Z) - Universal dynamics of superradiant phase transition in the anisotropic
quantum Rabi model [6.133109867277849]
We investigate the universally non-equilibrium dynamics of superradiant phase transition in the anisotropic quantum Rabi model.
We analytically extract the critical exponents from the excitation gap and the diverging length scale near the critical point.
arXiv Detail & Related papers (2020-09-23T10:44:29Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Subdiffusion via Disordered Quantum Walks [52.77024349608834]
We experimentally prove the feasibility of disordered quantum walks to realize a quantum simulator that is able to model general subdiffusive phenomena.
Our experiment simulates such phenomena by means of a finely controlled insertion of various levels of disorder during the evolution of the walker.
This allows us to explore the full range of subdiffusive behaviors, ranging from anomalous Anderson localization to normal diffusion.
arXiv Detail & Related papers (2020-07-24T13:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.