Family-Vicsek dynamical scaling and Kardar-Parisi-Zhang-like
superdiffusive growth of surface roughness in a driven one-dimensional
quasiperiodic model
- URL: http://arxiv.org/abs/2307.03807v3
- Date: Tue, 13 Feb 2024 16:47:04 GMT
- Title: Family-Vicsek dynamical scaling and Kardar-Parisi-Zhang-like
superdiffusive growth of surface roughness in a driven one-dimensional
quasiperiodic model
- Authors: Sreemayee Aditya, Nilanjan Roy
- Abstract summary: We investigate the out-of-equilibrium dynamics of spinless fermions in a one-dimensional quasiperiodic model with and without a periodic driving.
In absence of periodic driving, the model is interestingly shown to host a subdiffusive critical phase.
We construct an effective Floquet Hamiltonian, which qualitatively captures this feature occurring in the driven model.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The investigation of the dynamical universality classes of quantum systems is
an important, and rather less explored, aspect of non-equilibrium physics. In
this work, considering the out-of-equilibrium dynamics of spinless fermions in
a one-dimensional quasiperiodic model with and without a periodic driving, we
report the existence of the dynamical one-parameter based Family-Vicsek (FV)
scaling of the "quantum surface-roughness" associated with the particle-number
fluctuations. In absence of periodic driving, the model is interestingly shown
to host a subdiffusive critical phase separated by two subdiffusive critical
lines and a triple point from other phases. An analysis of the fate of critical
phase in the presence of (inter-phase) driving indicates that the critical
phase is quite fragile and has a tendency to get absorbed into the delocalized
or localized regime depending on the driving parameters. Furthermore, periodic
driving can conspire to show quantum Kardar-Parisi-Zhang (KPZ)-like
superdiffusive dynamical behavior, which seems to have no classical
counterpart. We further construct an effective Floquet Hamiltonian, which
qualitatively captures this feature occurring in the driven model
Related papers
- Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Dynamics of quantum discommensurations in the Frenkel-Kontorova chain [30.733286944793527]
We study how imperfections present in concrete implementations of the Frenkel-Kontorova model affect the properties of topological defects.
We analyze the propagation and scattering of solitons, examining the role of quantum fluctuations and imperfections in influencing these processes.
arXiv Detail & Related papers (2024-01-23T10:12:45Z) - Emergence of a quasi-ergodic steady state in a dissipative Tavis-Cummings array [0.0]
We show the emergence of a quasi-steady state in a dissipative environment that exhibits intriguing ergodic behavior.
The phase space dynamics reveals a fascinating ergodic behavior in presence of dissipation.
We discuss the relevance of our findings in the current experiments.
arXiv Detail & Related papers (2023-10-19T14:30:21Z) - Scale-invariant critical dynamics at eigenstate transitions [0.0]
We study features of scale-invariant dynamics of survival probability and SFF at criticality.
We show that, in contrast to the quantum chaotic regime, the quantum dynamics at criticality do not only exhibit scale invariance at late times.
arXiv Detail & Related papers (2023-09-27T20:35:58Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Peratic Phase Transition by Bulk-to-Surface Response [26.49714398456829]
We show a duality between many-body dynamics and static Hamiltonian ground states for both classical and quantum systems.
Our prediction of peratic phase transition has direct consequences in quantum simulation platforms such as Rydberg atoms and superconducting qubits.
arXiv Detail & Related papers (2021-09-27T18:00:01Z) - Entropy production dynamics in quench protocols of a driven-dissipative
critical system [0.0]
We study the dynamics of the entropy production rate in a quench scenario of the Kerr model.
The entropy production can be split into two contributions, one being extensive with the drive and describing classical irreversibility.
The latter, in particular, is found to reveal the high degree of non-adiabaticity, for quenches between different metastable states.
arXiv Detail & Related papers (2020-07-28T19:30:51Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z) - Dynamical crossover in the transient quench dynamics of short-range
transverse field Ising models [4.16271611433618]
We study the transient regimes of non-equilibrium processes probed by single-site observables that is magnetization per site.
The decay rates of time-dependent and single-site observables exhibit a dynamical crossover that separates two dynamical regions.
Our results reveal that scaling law exponent in short times at the close vicinity of the dynamical crossover is significantly different than the one predicted by analytical theory.
arXiv Detail & Related papers (2020-04-26T04:39:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.