論文の概要: Digital Ethics in Federated Learning
- arxiv url: http://arxiv.org/abs/2310.03178v2
- Date: Thu, 19 Oct 2023 00:00:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-20 18:58:28.642967
- Title: Digital Ethics in Federated Learning
- Title(参考訳): フェデレーション学習におけるデジタル倫理
- Authors: Liangqi Yuan and Ziran Wang and Christopher G. Brinton
- Abstract要約: フェデレートラーニングにおいて、人間中心のデバイスがクライアントとして機能するときに生じるデジタル倫理上の懸念を強調します。
我々はこれらの課題とその解決策を、クライアントとサーバの両方の観点から分析する。
- 参考スコア(独自算出の注目度): 11.445589641077587
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Internet of Things (IoT) consistently generates vast amounts of data,
sparking increasing concern over the protection of data privacy and the
limitation of data misuse. Federated learning (FL) facilitates collaborative
capabilities among multiple parties by sharing machine learning (ML) model
parameters instead of raw user data, and it has recently gained significant
attention for its potential in privacy preservation and learning efficiency
enhancement. In this paper, we highlight the digital ethics concerns that arise
when human-centric devices serve as clients in FL. More specifically,
challenges of game dynamics, fairness, incentive, and continuity arise in FL
due to differences in perspectives and objectives between clients and the
server. We analyze these challenges and their solutions from the perspectives
of both the client and the server, and through the viewpoints of centralized
and decentralized FL. Finally, we explore the opportunities in FL for
human-centric IoT as directions for future development.
- Abstract(参考訳): IoT(Internet of Things)は一貫して大量のデータを生成し、データのプライバシ保護とデータ誤使用の制限に対する懸念が高まっている。
フェデレーション学習(fl)は,生のユーザデータではなく機械学習(ml)モデルパラメータを共有することで,複数当事者間の協調機能を促進する。
本稿では,FLのクライアントとして人間中心のデバイスが使用される場合に生じる,デジタル倫理上の懸念を強調する。
具体的には、クライアントとサーバ間の視点や目的の違いから、ゲームダイナミクス、公正性、インセンティブ、継続性の課題が発生する。
我々は、これらの課題とその解決策を、クライアントとサーバの両方の観点から、そして集中型および分散型flの観点から分析する。
最後に、今後の開発の方向性として、人間中心のIoTにおけるFLの機会を探る。
関連論文リスト
- Privacy in Federated Learning [0.0]
フェデレートラーニング(FL)は、分散機械学習における重要な進歩である。
この章では、データ再構成のリスク、モデル反転攻撃、メンバシップ推論など、FLの中核的なプライバシに関する懸念を掘り下げている。
モデル精度とプライバシのトレードオフを調べ、実践的な実装においてこれらの要因のバランスをとることの重要性を強調します。
論文 参考訳(メタデータ) (2024-08-12T18:41:58Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
我々は,意図に基づくクライアント選択機構を備えた新しいPFLアルゴリズムであるFedACSを提案する。
FedACSは、類似したデータ分散を持つクライアント間のコラボレーションを強化するためのアテンションメカニズムを統合している。
CIFAR10とFMNISTの実験は、FedACSの優位性を検証する。
論文 参考訳(メタデータ) (2023-12-23T03:31:46Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
本稿では,プロトコルスタックのすべてのレベルにわたってフェデレートラーニングを実装することの付加価値について検討する。
それは重要なFLアプリケーションを示し、ホットトピックに対処し、将来の研究と開発のための貴重な洞察と明示的なガイダンスを提供します。
我々の結論は、FLと将来の6Gの相乗効果を活用しつつ、FLがワイヤレス産業に革命をもたらす可能性を浮き彫りにすることを目的としています。
論文 参考訳(メタデータ) (2023-12-07T20:39:57Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - Semantic Information Marketing in The Metaverse: A Learning-Based
Contract Theory Framework [68.8725783112254]
仮想サービスプロバイダ(VSP)によるインセンティブのメカニズム設計の問題に対処し,センサデータ販売にIoTデバイスを採用。
帯域幅が限られているため,センサIoTデバイスによる配信データを削減するためにセマンティック抽出アルゴリズムを提案する。
本稿では,新しい反復型契約設計を提案し,マルチエージェント強化学習(MARL)の新たな変種を用いて,モデル付き多次元契約問題の解法を提案する。
論文 参考訳(メタデータ) (2023-02-22T15:52:37Z) - Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM [62.62684911017472]
フェデレートラーニング(FL)により、デバイスは共有モデルを共同でトレーニングし、トレーニングデータをプライバシ目的でローカルに保つことができる。
マルチヘッド(VIM)を備えたVFLフレームワークを導入し、各クライアントの別々のコントリビューションを考慮に入れます。
VIMは最先端技術に比べて性能が著しく向上し、収束が速い。
論文 参考訳(メタデータ) (2022-07-20T23:14:33Z) - FedLess: Secure and Scalable Federated Learning Using Serverless
Computing [1.141832715860866]
フェデレートラーニング(FL)は、データをローカルに保ちながら、リモートクライアントが共有MLモデルを学ぶことを可能にする。
本稿では、FedLessと呼ばれるサーバーレスFLのための新しいシステムとフレームワークを提案する。
当社のシステムは,複数の商用および自己ホスト型Fプロバイダをサポートし,クラウド,オンプレミスの機関データセンタ,エッジデバイスにデプロイすることができる。
論文 参考訳(メタデータ) (2021-11-05T11:14:07Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z) - Fusion of Federated Learning and Industrial Internet of Things: A Survey [4.810675235074399]
産業モノのインターネット(IIoT)は産業4.0の概念のための新しいパラダイムを構築し、新しい産業時代のための洞察を与えます。
スマートマシンとスマートファクトリは、インテリジェンス獲得に機械学習/ディープラーニングベースのモデルを使用する。
この問題を解決するために、フェデレーションラーニング(FL)技術がIIoTに実装され、研究者は安全、正確、堅牢、および偏見のないモデルを提供しています。
論文 参考訳(メタデータ) (2021-01-04T06:28:32Z) - Evaluating the Communication Efficiency in Federated Learning Algorithms [3.713348568329249]
近年,多くの国で新たなプライバシー法が制定され,フェデレートラーニング(FL)の概念が導入されている。
FLでは、モバイルユーザーは、プライバシーに敏感なデータを共有せずに、ローカルモデルを集約することでグローバルモデルを学ぶことができる。
これにより、FLを大規模に実装する際の通信コストの課題が提起される。
論文 参考訳(メタデータ) (2020-04-06T15:31:54Z) - Federated Learning for Resource-Constrained IoT Devices: Panoramas and
State-of-the-art [12.129978716326676]
我々は最近実装されたフェデレートラーニングの現実的な応用をいくつか紹介する。
大規模ネットワークでは、様々な計算資源を持つクライアントが存在するかもしれない。
FL領域における資源制約装置の今後の方向性を強調した。
論文 参考訳(メタデータ) (2020-02-25T01:03:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。