論文の概要: Privacy in Federated Learning
- arxiv url: http://arxiv.org/abs/2408.08904v1
- Date: Mon, 12 Aug 2024 18:41:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-25 14:21:10.753531
- Title: Privacy in Federated Learning
- Title(参考訳): フェデレーション学習におけるプライバシ
- Authors: Jaydip Sen, Hetvi Waghela, Sneha Rakshit,
- Abstract要約: フェデレートラーニング(FL)は、分散機械学習における重要な進歩である。
この章では、データ再構成のリスク、モデル反転攻撃、メンバシップ推論など、FLの中核的なプライバシに関する懸念を掘り下げている。
モデル精度とプライバシのトレードオフを調べ、実践的な実装においてこれらの要因のバランスをとることの重要性を強調します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) represents a significant advancement in distributed machine learning, enabling multiple participants to collaboratively train models without sharing raw data. This decentralized approach enhances privacy by keeping data on local devices. However, FL introduces new privacy challenges, as model updates shared during training can inadvertently leak sensitive information. This chapter delves into the core privacy concerns within FL, including the risks of data reconstruction, model inversion attacks, and membership inference. It explores various privacy-preserving techniques, such as Differential Privacy (DP) and Secure Multi-Party Computation (SMPC), which are designed to mitigate these risks. The chapter also examines the trade-offs between model accuracy and privacy, emphasizing the importance of balancing these factors in practical implementations. Furthermore, it discusses the role of regulatory frameworks, such as GDPR, in shaping the privacy standards for FL. By providing a comprehensive overview of the current state of privacy in FL, this chapter aims to equip researchers and practitioners with the knowledge necessary to navigate the complexities of secure federated learning environments. The discussion highlights both the potential and limitations of existing privacy-enhancing techniques, offering insights into future research directions and the development of more robust solutions.
- Abstract(参考訳): フェデレーテッド・ラーニング(FL)は、分散機械学習における重要な進歩であり、複数の参加者が生データを共有せずに協力的にモデルをトレーニングすることができる。
この分散化アプローチは、ローカルデバイスにデータを保持することにより、プライバシを高める。
しかしFLは、トレーニング中に共有されたモデル更新が、必然的に機密情報を漏洩する可能性があるため、新たなプライバシの課題を導入している。
この章では、データ再構成のリスク、モデル反転攻撃、メンバシップ推論など、FLの中核的なプライバシに関する懸念を掘り下げている。
これらのリスクを軽減するために設計された、差分プライバシー(DP)やセキュアマルチパーティ計算(SMPC)など、さまざまなプライバシ保護技術について検討している。
この章ではモデルの正確性とプライバシのトレードオフについても検討し、実践的な実装におけるこれらの要因のバランスの重要性を強調している。
さらに、FLのプライバシー標準を形成する上でのGDPRのような規制フレームワークの役割についても論じている。
本章は、FLにおける現在のプライバシーの現状を概観することにより、セキュアな連邦学習環境の複雑さをナビゲートするために必要な知識を研究者や実践者に提供することを目的とする。
この議論は、既存のプライバシー強化技術の可能性と限界の両方を強調し、将来の研究の方向性とより堅牢なソリューションの開発に関する洞察を提供する。
関連論文リスト
- FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - Federated Learning Privacy: Attacks, Defenses, Applications, and Policy Landscape - A Survey [27.859861825159342]
ディープラーニングは、さまざまなタスクにおいて、信じられないほど大きな可能性を秘めている。
プライバシーに関する最近の懸念は、そのようなデータにアクセスする際の課題をさらに強調している。
フェデレーション学習は重要なプライバシー保護技術として登場した。
論文 参考訳(メタデータ) (2024-05-06T16:55:20Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.0]
本稿では、機械学習(ML)の進化する展望と、その様々な分野における大きな影響について考察する。
プライバシ保護機械学習(PPML)の新たな分野に焦点を当てている。
MLアプリケーションは、通信、金融技術、監視といった産業にとってますます不可欠なものになりつつあるため、プライバシー上の懸念が高まる。
論文 参考訳(メタデータ) (2024-02-25T17:31:06Z) - Using Decentralized Aggregation for Federated Learning with Differential
Privacy [0.32985979395737774]
フェデレートラーニング(FL)は、データをローカルノードに保持することで、ある程度のプライバシーを提供する。
本研究は、ベンチマークデータセットを用いて、差分プライバシー(DP)を用いたFL実験環境をデプロイする。
論文 参考訳(メタデータ) (2023-11-27T17:02:56Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Fair Differentially Private Federated Learning Framework [0.0]
Federated Learning(FL)は、参加者が個々のデータセットを共有することなく、協力し、共有モデルをトレーニングすることのできる、分散機械学習戦略である。
FLではプライバシと公平性が重要な考慮事項である。
本稿では、検証データなしで公正なグローバルモデルを作成し、グローバルなプライベートディファレンシャルモデルを作成するという課題に対処する枠組みを提案する。
論文 参考訳(メタデータ) (2023-05-23T09:58:48Z) - A Survey of Trustworthy Federated Learning with Perspectives on
Security, Robustness, and Privacy [47.89042524852868]
Federated Learning (FL) は,さまざまな現実のシナリオに対して,有望なソリューションとして注目されている。
しかし、データの分離とプライバシーに関する課題は、FLシステムの信頼性を脅かす。
論文 参考訳(メタデータ) (2023-02-21T12:52:12Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
プライバシ保護型共同エッジアソシエーションと電力配分問題について検討する。
提案されたソリューションは、最先端のソリューションよりも高いプライバシレベルを維持しながら、魅力的なトレードオフにぶつかる。
論文 参考訳(メタデータ) (2023-01-26T10:09:23Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
このトピックに関する最初の包括的な調査を実施します。
FLの概念の簡潔な紹介と、1脅威モデル、2堅牢性に対する中毒攻撃と防御、3プライバシーに対する推論攻撃と防御、というユニークな分類学を通じて、私たちはこの重要なトピックのアクセス可能なレビューを提供します。
論文 参考訳(メタデータ) (2020-12-07T12:11:45Z) - Privacy Preservation in Federated Learning: An insightful survey from
the GDPR Perspective [10.901568085406753]
この記事は、フェデレーテッドラーニングに使用できる最先端のプライバシー技術に関する調査に特化している。
近年の研究では、FLにおけるデータの保持と計算は、プライバシ保証者にとって不十分であることが示されている。
これは、FLシステム内のパーティ間で交換されるMLモデルパラメータが、いくつかのプライバシ攻撃で悪用されるためである。
論文 参考訳(メタデータ) (2020-11-10T21:41:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。