Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization
- URL: http://arxiv.org/abs/2310.03234v5
- Date: Tue, 24 Sep 2024 22:04:17 GMT
- Title: Non-Smooth Weakly-Convex Finite-sum Coupled Compositional Optimization
- Authors: Quanqi Hu, Dixian Zhu, Tianbao Yang,
- Abstract summary: This paper investigates new families of compositional optimization problems, called $linebf n$on-underline underlinebf sakly underlinebf c$ompositional $underlineunderline.
- Score: 42.861002114813864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates new families of compositional optimization problems, called $\underline{\bf n}$on-$\underline{\bf s}$mooth $\underline{\bf w}$eakly-$\underline{\bf c}$onvex $\underline{\bf f}$inite-sum $\underline{\bf c}$oupled $\underline{\bf c}$ompositional $\underline{\bf o}$ptimization (NSWC FCCO). There has been a growing interest in FCCO due to its wide-ranging applications in machine learning and AI, as well as its ability to address the shortcomings of stochastic algorithms based on empirical risk minimization. However, current research on FCCO presumes that both the inner and outer functions are smooth, limiting their potential to tackle a more diverse set of problems. Our research expands on this area by examining non-smooth weakly-convex FCCO, where the outer function is weakly convex and non-decreasing, and the inner function is weakly-convex. We analyze a single-loop algorithm and establish its complexity for finding an $\epsilon$-stationary point of the Moreau envelop of the objective function. Additionally, we also extend the algorithm to solving novel non-smooth weakly-convex tri-level finite-sum coupled compositional optimization problems, which feature a nested arrangement of three functions. Lastly, we explore the applications of our algorithms in deep learning for two-way partial AUC maximization and multi-instance two-way partial AUC maximization, using empirical studies to showcase the effectiveness of the proposed algorithms.
Related papers
- Nearly Optimal Sample Complexity of Offline KL-Regularized Contextual Bandits under Single-Policy Concentrability [49.96531901205305]
We propose the emphfirst algorithm with $tildeO(epsilon-1)$ sample complexity under single-policy concentrability for offline contextual bandits.
Our proof leverages the strong convexity of the KL regularization, and the conditional non-negativity of the gap between the true reward and its pessimistic estimator.
We extend our algorithm to contextual dueling bandits and achieve a similar nearly optimal sample complexity.
arXiv Detail & Related papers (2025-02-09T22:14:45Z) - Near-Optimal Online Learning for Multi-Agent Submodular Coordination: Tight Approximation and Communication Efficiency [52.60557300927007]
We present a $textbfMA-OSMA$ algorithm to transfer the discrete submodular problem into a continuous optimization.
We also introduce a projection-free $textbfMA-OSEA$ algorithm, which effectively utilizes the KL divergence by mixing a uniform distribution.
Our algorithms significantly improve the $(frac11+c)$-approximation provided by the state-of-the-art OSG algorithm.
arXiv Detail & Related papers (2025-02-07T15:57:56Z) - Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization [77.3396841985172]
We provide a unified analysis of two-timescale gradient ascent (TTGDA) for solving structured non minimax optimization problems.
Our contribution is to design TTGDA algorithms are effective beyond the setting.
arXiv Detail & Related papers (2024-08-21T20:14:54Z) - Two-Timescale Optimization Framework for Decentralized Linear-Quadratic Optimal Control [3.746304628644379]
A $mathcal$-guaranteed linear decentralized-quadratic optimal control with convex parameterization convex-bounded uncertainty is studied.
arXiv Detail & Related papers (2024-06-17T03:17:33Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
We propose an online convex optimization approach with two different levels of adaptivity.
We obtain $mathcalO(log V_T)$, $mathcalO(d log V_T)$ and $hatmathcalO(sqrtV_T)$ regret bounds for strongly convex, exp-concave and convex loss functions.
arXiv Detail & Related papers (2023-07-17T09:55:35Z) - Stochastic Nested Compositional Bi-level Optimization for Robust Feature
Learning [11.236838268731804]
We develop and analyze algorithms for solving nested bi-level optimization problems.
Our proposed algorithm does not rely on matrix complexity or mini-batches.
arXiv Detail & Related papers (2023-07-11T15:52:04Z) - Decentralized Weakly Convex Optimization Over the Stiefel Manifold [28.427697270742947]
We focus on the Stiefel manifold in the decentralized setting, where a connected network of agents in $nMn log-1)$ are tested.
We propose an method called the decentralized subgradient method (DRSM)$ for forcing a natural station below $nMn log-1)$.
arXiv Detail & Related papers (2023-03-31T02:56:23Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
We propose an efficient adaptive minimax optimization algorithm (i.e., AdaFGDA) to solve these minimax problems.
It builds our momentum-based reduced and localSGD techniques, and it flexibly incorporate various adaptive learning rates.
arXiv Detail & Related papers (2022-11-14T12:32:18Z) - Nonsmooth Nonconvex-Nonconcave Minimax Optimization: Primal-Dual Balancing and Iteration Complexity Analysis [23.80683445944524]
We introduce a novel analysis for PLDA, the key are our newly developed nonsmooth and dual error iterations.
When $thetain [0,12]$, PLDA achieves the optimal $mathcalO()$ under mild assumptions.
arXiv Detail & Related papers (2022-09-22T07:12:48Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - Projection-Free Algorithm for Stochastic Bi-level Optimization [17.759493152879013]
This work presents the first projection-free algorithm to solve bi-level optimization problems, where the objective function depends on another optimization problem.
The proposed $textbfStochastic $textbfF$rank-$textbfW$olfe ($textbfSCFW$) is shown to achieve a sample complexity of $mathcalO(epsilon-2)$ for convex objectives.
arXiv Detail & Related papers (2021-10-22T11:49:15Z) - Lower Complexity Bounds of Finite-Sum Optimization Problems: The Results
and Construction [18.65143269806133]
We consider Proximal Incremental First-order (PIFO) algorithms which have access to gradient and proximal oracle for each individual component.
We develop a novel approach for constructing adversarial problems, which partitions the tridiagonal matrix of classical examples into $n$ groups.
arXiv Detail & Related papers (2021-03-15T11:20:31Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.