論文の概要: Enhancing Exfiltration Path Analysis Using Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2310.03667v1
- Date: Thu, 5 Oct 2023 16:43:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 03:12:08.759593
- Title: Enhancing Exfiltration Path Analysis Using Reinforcement Learning
- Title(参考訳): 強化学習を用いた浸透経路解析の強化
- Authors: Riddam Rishu, Akshay Kakkar, Cheng Wang, Abdul Rahman, Christopher Redino, Dhruv Nandakumar, Tyler Cody, Ryan Clark, Daniel Radke, Edward Bowen,
- Abstract要約: この作業は、プロトコルとペイロードを考慮した方法論を拡張します。
生成されたパスは、通信ペイロードとプロトコルをMarkov決定プロセスに含めることで強化される。
- 参考スコア(独自算出の注目度): 7.112500486473225
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Building on previous work using reinforcement learning (RL) focused on identification of exfiltration paths, this work expands the methodology to include protocol and payload considerations. The former approach to exfiltration path discovery, where reward and state are associated specifically with the determination of optimal paths, are presented with these additional realistic characteristics to account for nuances in adversarial behavior. The paths generated are enhanced by including communication payload and protocol into the Markov decision process (MDP) in order to more realistically emulate attributes of network based exfiltration events. The proposed method will help emulate complex adversarial considerations such as the size of a payload being exported over time or the protocol on which it occurs, as is the case where threat actors steal data over long periods of time using system native ports or protocols to avoid detection. As such, practitioners will be able to improve identification of expected adversary behavior under various payload and protocol assumptions more comprehensively.
- Abstract(参考訳): 本研究は, 拡張学習(RL)を用いて, 濾過経路の同定に焦点を合わせ, プロトコルやペイロードを考慮した方法論を拡張した。
最適経路の決定に報酬と状態が特に関連しているエミッションパス発見に対する以前のアプローチは、敵の行動のニュアンスを考慮に入れたこれらの追加的な現実的特徴を提示する。
生成されたパスは、通信ペイロードとプロトコルをマルコフ決定プロセス(MDP)に組み込むことで拡張され、ネットワークベースのフィルタイベントの属性をより現実的にエミュレートする。
提案手法は,時間とともにエクスポートされるペイロードのサイズや,その発生するプロトコルなど,複雑な敵の考慮事項をエミュレートする上で有効である。
そのため、様々なペイロードやプロトコルの仮定に基づいて、予想される敵行動の識別をより包括的に改善することができる。
関連論文リスト
- Revolutionizing Payload Inspection: A Self-Supervised Journey to Precision with Few Shots [0.0]
従来のセキュリティ対策は、現代のサイバー攻撃の高度化に対して不十分である。
Deep Packet Inspection (DPI)は、ネットワークセキュリティの強化において重要な役割を担っている。
先進的なディープラーニング技術とDPIの統合は、マルウェア検出に現代的な手法を導入している。
論文 参考訳(メタデータ) (2024-09-26T18:55:52Z) - On the Robustness of LDP Protocols for Numerical Attributes under Data Poisoning Attacks [17.351593328097977]
ローカルディファレンシャルプライバシ(LDP)プロトコルは、データ中毒攻撃に対して脆弱である。
この脆弱性は、敵対的環境におけるLDPの堅牢性と信頼性に関する懸念を引き起こす。
論文 参考訳(メタデータ) (2024-03-28T15:43:38Z) - Transcending Forgery Specificity with Latent Space Augmentation for Generalizable Deepfake Detection [57.646582245834324]
LSDAと呼ばれる簡易で効果的なディープフェイク検出器を提案する。
より多様な偽の表現は、より一般化可能な決定境界を学べるべきである。
提案手法は驚くほど有効であり, 広く使用されている複数のベンチマークで最先端の検出器を超越することを示す。
論文 参考訳(メタデータ) (2023-11-19T09:41:10Z) - A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks [2.686686221415684]
侵入検知は、セキュリティ専門家の伝統的な慣行であるが、まだ対処すべき問題がいくつかある。
本稿では、未知の攻撃と未知の攻撃の両方を適応的かつ漸進的に検出するハイブリッド侵入検知システム(IDS)のアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-10-26T14:37:54Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Online Safety Property Collection and Refinement for Safe Deep
Reinforcement Learning in Mapless Navigation [79.89605349842569]
オンラインプロパティのコレクション・リファインメント(CROP)フレームワークをトレーニング時にプロパティを設計するために導入する。
CROPは、安全でない相互作用を識別し、安全特性を形成するためにコストシグナルを使用する。
本手法をいくつかのロボットマップレスナビゲーションタスクで評価し,CROPで計算した違反量によって,従来のSafe DRL手法よりも高いリターンと低いリターンが得られることを示す。
論文 参考訳(メタデータ) (2023-02-13T21:19:36Z) - Defending Substitution-Based Profile Pollution Attacks on Sequential
Recommenders [8.828396559882954]
本稿では,ある脆弱な要素を選択し,それを逆数要素に置換することで,入力シーケンスを修飾する置換型逆数攻撃アルゴリズムを提案する。
また、ディリクレ近傍サンプリングと呼ばれる効率的な対角防御手法を設計する。
特に,選択した項目を1ホットエンコーディングで表現し,エンコーディングの勾配上昇を行い,トレーニング中の項目埋め込みの最悪の場合の線形結合を探索する。
論文 参考訳(メタデータ) (2022-07-19T00:19:13Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
本研究では,実用的連続可変(CV)量子鍵分布プロトコルの性能について検討する。
ヘテロダイン検出を用いたガウス変調コヒーレント状態プロトコルを高信号対雑音比で検討する。
これにより、プロトコルの実践的な実装の性能を調べ、上記のステップに関連付けられたパラメータを最適化することができる。
論文 参考訳(メタデータ) (2022-05-20T12:37:09Z) - Discovering Exfiltration Paths Using Reinforcement Learning with Attack
Graphs [0.3431096786139342]
この研究は、最適経路を計算するという目標に焦点をあてた、以前のクラウンジュエリー(CJ)識別に基づいている。
その結果,大規模ネットワーク環境における有望な性能が示された。
論文 参考訳(メタデータ) (2022-01-28T21:01:06Z) - Rule-based Shielding for Partially Observable Monte-Carlo Planning [78.05638156687343]
一部観測可能なモンテカルロ計画(POMCP)への2つの貢献を提案する。
1つ目は、POMCPが選択した予期しない行動を、タスクのエキスパートの事前知識に関して識別する方法です。
2つ目は、POMCPが予期せぬ動作を選択するのを防ぐ遮蔽アプローチである。
我々は,pomdpsの標準ベンチマークであるtigerに対するアプローチと,移動ロボットナビゲーションにおける速度規制に関する実世界問題を評価する。
論文 参考訳(メタデータ) (2021-04-28T14:23:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。