Anytime-valid t-tests and confidence sequences for Gaussian means with unknown variance
- URL: http://arxiv.org/abs/2310.03722v5
- Date: Wed, 06 Nov 2024 22:27:19 GMT
- Title: Anytime-valid t-tests and confidence sequences for Gaussian means with unknown variance
- Authors: Hongjian Wang, Aaditya Ramdas,
- Abstract summary: In 1976, Lai constructed a nontrivial confidence sequence for the mean $mu$ of a Gaussian distribution with unknown variance.
Here, we elaborate carefully on the details of his construction, which use generalized nonintegrable martingales and an extended Ville's inequality.
We develop two new e-processes and confidence sequences for the same setting.
- Score: 30.14855064043107
- License:
- Abstract: In 1976, Lai constructed a nontrivial confidence sequence for the mean $\mu$ of a Gaussian distribution with unknown variance $\sigma^2$. Curiously, he employed both an improper (right Haar) mixture over $\sigma$ and an improper (flat) mixture over $\mu$. Here, we elaborate carefully on the details of his construction, which use generalized nonintegrable martingales and an extended Ville's inequality. While this does yield a sequential t-test, it does not yield an "e-process" (due to the nonintegrability of his martingale). In this paper, we develop two new e-processes and confidence sequences for the same setting: one is a test martingale in a reduced filtration, while the other is an e-process in the canonical data filtration. These are respectively obtained by swapping Lai's flat mixture for a Gaussian mixture, and swapping the right Haar mixture over $\sigma$ with the maximum likelihood estimate under the null, as done in universal inference. We also analyze the width of resulting confidence sequences, which have a curious polynomial dependence on the error probability $\alpha$ that we prove to be not only unavoidable, but (for universal inference) even better than the classical fixed-sample t-test. Numerical experiments are provided along the way to compare and contrast the various approaches, including some recent suboptimal ones.
Related papers
- Nonlinear Stochastic Gradient Descent and Heavy-tailed Noise: A Unified Framework and High-probability Guarantees [56.80920351680438]
We study high-probability convergence in online learning, in the presence of heavy-tailed noise.
Compared to state-of-the-art, who only consider clipping and require noise with bounded $p$-th moments, we provide guarantees for a broad class of nonlinearities.
arXiv Detail & Related papers (2024-10-17T18:25:28Z) - Learning general Gaussian mixtures with efficient score matching [16.06356123715737]
We study the problem of learning mixtures of $k$ Gaussians in $d$ dimensions.
We make no separation assumptions on the underlying mixture components.
We give an algorithm that draws $dmathrmpoly(k/varepsilon)$ samples from the target mixture, runs in sample-polynomial time, and constructs a sampler.
arXiv Detail & Related papers (2024-04-29T17:30:36Z) - Gaussian-Smoothed Sliced Probability Divergences [15.123608776470077]
We show that smoothing and slicing preserve the metric property and the weak topology.
We also derive other properties, including continuity, of different divergences with respect to the smoothing parameter.
arXiv Detail & Related papers (2024-04-04T07:55:46Z) - High Probability Bounds for a Class of Nonconvex Algorithms with AdaGrad
Stepsize [55.0090961425708]
We propose a new, simplified high probability analysis of AdaGrad for smooth, non- probability problems.
We present our analysis in a modular way and obtain a complementary $mathcal O (1 / TT)$ convergence rate in the deterministic setting.
To the best of our knowledge, this is the first high probability for AdaGrad with a truly adaptive scheme, i.e., completely oblivious to the knowledge of smoothness.
arXiv Detail & Related papers (2022-04-06T13:50:33Z) - Covariance-Aware Private Mean Estimation Without Private Covariance Estimation [10.036088581191592]
We present two sample-efficient differentially private mean estimators for $d$-dimensional (sub)Gaussian distributions.
Our estimators output $tildemu$ such that $| tildemu - mu |_Sigma leq alpha$, where $| cdot |_Sigma$ is the Mahalanobis distance.
arXiv Detail & Related papers (2021-06-24T21:40:07Z) - The Sample Complexity of Robust Covariance Testing [56.98280399449707]
We are given i.i.d. samples from a distribution of the form $Z = (1-epsilon) X + epsilon B$, where $X$ is a zero-mean and unknown covariance Gaussian $mathcalN(0, Sigma)$.
In the absence of contamination, prior work gave a simple tester for this hypothesis testing task that uses $O(d)$ samples.
We prove a sample complexity lower bound of $Omega(d2)$ for $epsilon$ an arbitrarily small constant and $gamma
arXiv Detail & Related papers (2020-12-31T18:24:41Z) - Optimal Sub-Gaussian Mean Estimation in $\mathbb{R}$ [5.457150493905064]
We present a novel estimator with sub-Gaussian convergence.
Our estimator does not require prior knowledge of the variance.
Our estimator construction and analysis gives a framework generalizable to other problems.
arXiv Detail & Related papers (2020-11-17T02:47:24Z) - Sharp Statistical Guarantees for Adversarially Robust Gaussian
Classification [54.22421582955454]
We provide the first result of the optimal minimax guarantees for the excess risk for adversarially robust classification.
Results are stated in terms of the Adversarial Signal-to-Noise Ratio (AdvSNR), which generalizes a similar notion for standard linear classification to the adversarial setting.
arXiv Detail & Related papers (2020-06-29T21:06:52Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
We study the efficient learnability of high-dimensional Gaussian mixtures in the adversarial-robust setting.
We provide an algorithm that learns the components of an $epsilon$-corrupted $k$-mixture within information theoretically near-optimal error proofs of $tildeO(epsilon)$.
Our main technical contribution is a new robust identifiability proof clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system.
arXiv Detail & Related papers (2020-05-13T16:44:12Z) - Algebraic and Analytic Approaches for Parameter Learning in Mixture
Models [66.96778152993858]
We present two different approaches for parameter learning in several mixture models in one dimension.
For some of these distributions, our results represent the first guarantees for parameter estimation.
arXiv Detail & Related papers (2020-01-19T05:10:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.