Online Covariance Estimation in Nonsmooth Stochastic Approximation
- URL: http://arxiv.org/abs/2502.05305v1
- Date: Fri, 07 Feb 2025 20:16:51 GMT
- Title: Online Covariance Estimation in Nonsmooth Stochastic Approximation
- Authors: Liwei Jiang, Abhishek Roy, Krishna Balasubramanian, Damek Davis, Dmitriy Drusvyatskiy, Sen Na,
- Abstract summary: We consider applying approximation (SA) methods to solve nonsmooth variational inclusion problems.
Our convergence construction establish the best-known for statistical estimation methods.
- Score: 14.818683408659764
- License:
- Abstract: We consider applying stochastic approximation (SA) methods to solve nonsmooth variational inclusion problems. Existing studies have shown that the averaged iterates of SA methods exhibit asymptotic normality, with an optimal limiting covariance matrix in the local minimax sense of H\'ajek and Le Cam. However, no methods have been proposed to estimate this covariance matrix in a nonsmooth and potentially non-monotone (nonconvex) setting. In this paper, we study an online batch-means covariance matrix estimator introduced in Zhu et al.(2023). The estimator groups the SA iterates appropriately and computes the sample covariance among batches as an estimate of the limiting covariance. Its construction does not require prior knowledge of the total sample size, and updates can be performed recursively as new data arrives. We establish that, as long as the batch size sequence is properly specified (depending on the stepsize sequence), the estimator achieves a convergence rate of order $O(\sqrt{d}n^{-1/8+\varepsilon})$ for any $\varepsilon>0$, where $d$ and $n$ denote the problem dimensionality and the number of iterations (or samples) used. Although the problem is nonsmooth and potentially non-monotone (nonconvex), our convergence rate matches the best-known rate for covariance estimation methods using only first-order information in smooth and strongly-convex settings. The consistency of this covariance estimator enables asymptotically valid statistical inference, including constructing confidence intervals and performing hypothesis testing.
Related papers
- Towards Self-Supervised Covariance Estimation in Deep Heteroscedastic Regression [102.24287051757469]
We study self-supervised covariance estimation in deep heteroscedastic regression.
We derive an upper bound on the 2-Wasserstein distance between normal distributions.
Experiments over a wide range of synthetic and real datasets demonstrate that the proposed 2-Wasserstein bound coupled with pseudo label annotations results in a computationally cheaper yet accurate deep heteroscedastic regression.
arXiv Detail & Related papers (2025-02-14T22:37:11Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient [40.22217106270146]
Variance reduction techniques are designed to decrease the sampling variance, thereby accelerating convergence rates of first-order (FO) and zeroth-order (ZO) optimization methods.
In composite optimization problems, ZO methods encounter an additional variance called the coordinate-wise variance, which stems from the random estimation.
This paper proposes the Zeroth-order Proximal Double Variance Reduction (ZPDVR) method, which utilizes the averaging trick to reduce both sampling and coordinate-wise variances.
arXiv Detail & Related papers (2024-05-28T02:27:53Z) - Nearest Neighbor Sampling for Covariate Shift Adaptation [7.940293148084844]
We propose a new covariate shift adaptation method which avoids estimating the weights.
The basic idea is to directly work on unlabeled target data, labeled according to the $k$-nearest neighbors in the source dataset.
Our experiments show that it achieves drastic reduction in the running time with remarkable accuracy.
arXiv Detail & Related papers (2023-12-15T17:28:09Z) - TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression [109.69084997173196]
Deepscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood.
Recent works show that this may result in sub-optimal convergence due to the challenges associated with covariance estimation.
We study two questions: (1) Does the predicted covariance truly capture the randomness of the predicted mean?
Our results show that not only does TIC accurately learn the covariance, it additionally facilitates an improved convergence of the negative log-likelihood.
arXiv Detail & Related papers (2023-10-29T09:54:03Z) - Covariance Estimators for the ROOT-SGD Algorithm in Online Learning [7.00422423634143]
We develop two estimators for the algorithm covariance of ROOT-SGD.
Our first estimator adopts the idea of plug-in. For each unknown component in the formula of the covariance, we substitute it with its empirical counterpart.
Our second estimator is a Hessian-free estimator that overcomes the limitation.
arXiv Detail & Related papers (2022-12-02T15:55:52Z) - A lower confidence sequence for the changing mean of non-negative right
heavy-tailed observations with bounded mean [9.289846887298854]
A confidence sequence produces an adapted sequence of sets for a predictable parameter sequence with a time-parametric coverage guarantee.
This work constructs a non-asymptotic lower CS for the running average conditional expectation whose slack converges to zero.
arXiv Detail & Related papers (2022-10-20T09:50:05Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
We consider online statistical inference of constrained nonlinear optimization problems.
We apply the Sequential Quadratic Programming (StoSQP) method to solve these problems.
arXiv Detail & Related papers (2022-05-27T00:34:03Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.