Gaussian-Smoothed Sliced Probability Divergences
- URL: http://arxiv.org/abs/2404.03273v2
- Date: Thu, 25 Apr 2024 08:57:48 GMT
- Title: Gaussian-Smoothed Sliced Probability Divergences
- Authors: Mokhtar Z. Alaya, Alain Rakotomamonjy, Maxime Berar, Gilles Gasso,
- Abstract summary: We show that smoothing and slicing preserve the metric property and the weak topology.
We also derive other properties, including continuity, of different divergences with respect to the smoothing parameter.
- Score: 15.123608776470077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian smoothed sliced Wasserstein distance has been recently introduced for comparing probability distributions, while preserving privacy on the data. It has been shown that it provides performances similar to its non-smoothed (non-private) counterpart. However, the computationaland statistical properties of such a metric have not yet been well-established. This work investigates the theoretical properties of this distance as well as those of generalized versions denoted as Gaussian-smoothed sliced divergences. We first show that smoothing and slicing preserve the metric property and the weak topology. To study the sample complexity of such divergences, we then introduce $\hat{\hat\mu}_{n}$ the double empirical distribution for the smoothed-projected $\mu$. The distribution $\hat{\hat\mu}_{n}$ is a result of a double sampling process: one from sampling according to the origin distribution $\mu$ and the second according to the convolution of the projection of $\mu$ on the unit sphere and the Gaussian smoothing. We particularly focus on the Gaussian smoothed sliced Wasserstein distance and prove that it converges with a rate $O(n^{-1/2})$. We also derive other properties, including continuity, of different divergences with respect to the smoothing parameter. We support our theoretical findings with empirical studies in the context of privacy-preserving domain adaptation.
Related papers
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - Improved Analysis of Score-based Generative Modeling: User-Friendly
Bounds under Minimal Smoothness Assumptions [9.953088581242845]
We provide convergence guarantees with complexity for any data distribution with second-order moment.
Our result does not rely on any log-concavity or functional inequality assumption.
Our theoretical analysis provides comparison between different discrete approximations and may guide the choice of discretization points in practice.
arXiv Detail & Related papers (2022-11-03T15:51:00Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - Statistical and Topological Properties of Gaussian Smoothed Sliced
Probability Divergences [9.08047281767226]
We show that smoothing and slicing preserve the metric property and the weak topology.
We also provide results on the sample complexity of such divergences.
arXiv Detail & Related papers (2021-10-20T12:21:32Z) - Estimating 2-Sinkhorn Divergence between Gaussian Processes from
Finite-Dimensional Marginals [4.416484585765028]
We study the convergence of estimating the 2-Sinkhorn divergence between emphGaussian processes (GPs) using their finite-dimensional marginal distributions.
We show almost sure convergence of the divergence when the marginals are sampled according to some base measure.
arXiv Detail & Related papers (2021-02-05T16:17:55Z) - Optimal Sub-Gaussian Mean Estimation in $\mathbb{R}$ [5.457150493905064]
We present a novel estimator with sub-Gaussian convergence.
Our estimator does not require prior knowledge of the variance.
Our estimator construction and analysis gives a framework generalizable to other problems.
arXiv Detail & Related papers (2020-11-17T02:47:24Z) - $(f,\Gamma)$-Divergences: Interpolating between $f$-Divergences and
Integral Probability Metrics [6.221019624345409]
We develop a framework for constructing information-theoretic divergences that subsume both $f$-divergences and integral probability metrics (IPMs)
We show that they can be expressed as a two-stage mass-redistribution/mass-transport process.
Using statistical learning as an example, we demonstrate their advantage in training generative adversarial networks (GANs) for heavy-tailed, not-absolutely continuous sample distributions.
arXiv Detail & Related papers (2020-11-11T18:17:09Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
This article characterizes the exacts of random Fourier feature (RFF) regression, in the realistic setting where the number of data samples $n$ is all large and comparable.
This analysis also provides accurate estimates of training and test regression errors for large $n,p,N$.
arXiv Detail & Related papers (2020-06-09T02:05:40Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Curse of Dimensionality on Randomized Smoothing for Certifiable
Robustness [151.67113334248464]
We show that extending the smoothing technique to defend against other attack models can be challenging.
We present experimental results on CIFAR to validate our theory.
arXiv Detail & Related papers (2020-02-08T22:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.