論文の概要: Enhancing Healthcare with EOG: A Novel Approach to Sleep Stage
Classification
- arxiv url: http://arxiv.org/abs/2310.03757v1
- Date: Mon, 25 Sep 2023 16:23:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-15 14:59:58.776876
- Title: Enhancing Healthcare with EOG: A Novel Approach to Sleep Stage
Classification
- Title(参考訳): EOGによるヘルスケアの強化:睡眠段階分類の新しいアプローチ
- Authors: Suvadeep Maiti, Shivam Kumar Sharma, Raju S. Bapi
- Abstract要約: EOG信号を用いた自動睡眠ステージ分類に革新的アプローチを導入し、脳波データ取得に伴う不快感と非現実性に対処する。
提案するSE-Resnet-Transformerモデルは、生のEOG信号から5つの異なる睡眠ステージを正確に分類する。
- 参考スコア(独自算出の注目度): 1.565361244756411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an innovative approach to automated sleep stage classification
using EOG signals, addressing the discomfort and impracticality associated with
EEG data acquisition. In addition, it is important to note that this approach
is untapped in the field, highlighting its potential for novel insights and
contributions. Our proposed SE-Resnet-Transformer model provides an accurate
classification of five distinct sleep stages from raw EOG signal. Extensive
validation on publically available databases (SleepEDF-20, SleepEDF-78, and
SHHS) reveals noteworthy performance, with macro-F1 scores of 74.72, 70.63, and
69.26, respectively. Our model excels in identifying REM sleep, a crucial
aspect of sleep disorder investigations. We also provide insight into the
internal mechanisms of our model using techniques such as 1D-GradCAM and t-SNE
plots. Our method improves the accessibility of sleep stage classification
while decreasing the need for EEG modalities. This development will have
promising implications for healthcare and the incorporation of wearable
technology into sleep studies, thereby advancing the field's potential for
enhanced diagnostics and patient comfort.
- Abstract(参考訳): EOG信号を用いた自動睡眠ステージ分類に革新的アプローチを導入し、脳波データ取得に伴う不快感と非現実性に対処する。
さらに、このアプローチはこの分野では未実装であり、新しい洞察と貢献の可能性を強調している点にも注意が必要だ。
提案するSE-Resnet-Transformerモデルは,生のEOG信号から5つの異なる睡眠ステージを正確に分類する。
一般に利用可能なデータベース(SleepEDF-20、SleepEDF-78、SHHS)の大規模な検証は、それぞれ74.72、70.63、69.26のマクロF1スコアで注目すべきパフォーマンスを示している。
我々のモデルは、睡眠障害研究の重要な側面であるREM睡眠の同定に優れている。
また,1D-GradCAMやt-SNEプロットなどの手法を用いて,モデルの内部メカニズムについて考察する。
脳波モダリティの必要性を低減しつつ、睡眠段階分類のアクセシビリティを向上させる。
この開発は、医療と睡眠研究へのウェアラブル技術の導入に有望な意味を持ち、診断と患者の快適性を高めるための分野の可能性を前進させる。
関連論文リスト
- MSSC-BiMamba: Multimodal Sleep Stage Classification and Early Diagnosis of Sleep Disorders with Bidirectional Mamba [5.606144017978037]
本研究では,睡眠時ステージングと障害分類の自動モデルを構築し,診断精度と効率を向上させる。
マルチモード睡眠状態分類モデルMSSC-BiMamba を設計した。
このモデルは、マルチモーダルPSGデータを用いたスリープステージングにBiMambaを初めて適用し、計算とメモリ効率を大幅に向上させた。
論文 参考訳(メタデータ) (2024-05-30T15:16:53Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
心電図不整脈分類におけるアナログ計算と深層学習を組み合わせた統合的アプローチを提案する。
本稿では,低消費電力で高精度にアーカイブするハードウェア効率と完全アナログ不整脈分類アーキテクチャであるEKGNetを提案する。
論文 参考訳(メタデータ) (2023-10-24T02:37:49Z) - Transparency in Sleep Staging: Deep Learning Method for EEG Sleep Stage
Classification with Model Interpretability [5.747465732334616]
本研究では,残差ネットワーク内に圧縮ブロックと励起ブロックを統合し,複雑な時間的依存関係を理解するために,特徴抽出と積み重ねBi-LSTMを組み込んだエンド・ツー・エンドディープラーニング(DL)モデルを提案する。
本研究の特筆すべき側面は、睡眠ステージングのためのGradCamの適応であり、この領域における説明可能なDLモデルの最初の事例であり、その決定と睡眠専門家の洞察の一致である。
論文 参考訳(メタデータ) (2023-09-10T17:56:03Z) - Classification of sleep stages from EEG, EOG and EMG signals by SSNet [2.1915057426589746]
睡眠段階の分類は、睡眠障害ブレスティング(SDB)病を含む睡眠関連疾患の診断において重要な役割を担っている。
我々は,CNNとLSTMに基づく2つのディープラーニングネットワークからなる,SSNetというエンドツーエンドのディープラーニングアーキテクチャを提案する。
本モデルでは, 睡眠段階の分類において, 最先端技術と比較して最高の性能を達成している。
論文 参考訳(メタデータ) (2023-07-03T01:05:24Z) - EEG-based Sleep Staging with Hybrid Attention [4.718295968108302]
我々は、HASS(Hybrid Attention EEG Sleep Staging)と呼ばれる新しいフレームワークを提案する。
提案手法は,睡眠時脳波信号の空間的・時間的関係を捉えることの難しさを軽減する。
論文 参考訳(メタデータ) (2023-05-16T15:37:32Z) - Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage [18.059360820527687]
単チャンネル脳波(EEG)、脳電図(EOG)、筋電図(EMG)、心電図(ECG)などの単純なセンサーを用いた睡眠段階分類が注目されている。
本研究では、次の睡眠段階を予測する睡眠モデルを提案し、睡眠分類精度を向上させるために使用した。
論文 参考訳(メタデータ) (2023-02-17T07:37:54Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
睡眠活動認識法は、被験者の睡眠覚醒サイクルを評価し、監視し、特徴づけ、行動の変化を検出する指標を提供することができる。
本稿では,スマートフォンから受動的に知覚されたデータを連続的に操作して,睡眠の特徴を識別し,重要な睡眠エピソードを識別する一般的な方法を提案する。
これらの装置は、その用途により、連続的で客観的で非侵襲的な方法で被験者の生体リズムをプロファイルするための優れた代替データ源となっている。
論文 参考訳(メタデータ) (2023-01-17T15:18:45Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
15秒未満の睡眠の短い断片は、マイクロスリープエピソード(MSEs)として定義される
覚醒検査(MWT)の維持は、警戒を評価するために臨床現場でしばしば用いられる。
MSEは、MSEを定義する確立された評価基準が欠如しているため、ほとんど考慮されていない。
入力として生の脳波とEOGデータに基づいて機械学習を用いてMSEを自動的に検出することを目的とした。
論文 参考訳(メタデータ) (2020-09-07T11:38:40Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。