Learning A Disentangling Representation For PU Learning
- URL: http://arxiv.org/abs/2310.03833v1
- Date: Thu, 5 Oct 2023 18:33:32 GMT
- Title: Learning A Disentangling Representation For PU Learning
- Authors: Omar Zamzam, Haleh Akrami, Mahdi Soltanolkotabi, Richard Leahy
- Abstract summary: We propose to learn a neural network-based data representation using a loss function that can be used to project the unlabeled data into two clusters.
We conduct experiments on simulated PU data that demonstrate the improved performance of our proposed method compared to the current state-of-the-art approaches.
- Score: 18.94726971543125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we address the problem of learning a binary (positive vs.
negative) classifier given Positive and Unlabeled data commonly referred to as
PU learning. Although rudimentary techniques like clustering,
out-of-distribution detection, or positive density estimation can be used to
solve the problem in low-dimensional settings, their efficacy progressively
deteriorates with higher dimensions due to the increasing complexities in the
data distribution. In this paper we propose to learn a neural network-based
data representation using a loss function that can be used to project the
unlabeled data into two (positive and negative) clusters that can be easily
identified using simple clustering techniques, effectively emulating the
phenomenon observed in low-dimensional settings. We adopt a vector quantization
technique for the learned representations to amplify the separation between the
learned unlabeled data clusters. We conduct experiments on simulated PU data
that demonstrate the improved performance of our proposed method compared to
the current state-of-the-art approaches. We also provide some theoretical
justification for our two cluster-based approach and our algorithmic choices.
Related papers
- Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - Mutual Information Learned Classifiers: an Information-theoretic
Viewpoint of Training Deep Learning Classification Systems [9.660129425150926]
Cross entropy loss can easily lead us to find models which demonstrate severe overfitting behavior.
In this paper, we prove that the existing cross entropy loss minimization for training DNN classifiers essentially learns the conditional entropy of the underlying data distribution.
We propose a mutual information learning framework where we train DNN classifiers via learning the mutual information between the label and input.
arXiv Detail & Related papers (2022-10-03T15:09:19Z) - Federated Representation Learning via Maximal Coding Rate Reduction [109.26332878050374]
We propose a methodology to learn low-dimensional representations from a dataset that is distributed among several clients.
Our proposed method, which we refer to as FLOW, utilizes MCR2 as the objective of choice, hence resulting in representations that are both between-class discriminative and within-class compressible.
arXiv Detail & Related papers (2022-10-01T15:43:51Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
arXiv Detail & Related papers (2021-12-31T10:03:47Z) - Unsupervised feature selection via self-paced learning and low-redundant
regularization [6.083524716031565]
An unsupervised feature selection is proposed by integrating the framework of self-paced learning and subspace learning.
The convergence of the method is proved theoretically and experimentally.
The experimental results show that the proposed method can improve the performance of clustering methods and outperform other compared algorithms.
arXiv Detail & Related papers (2021-12-14T08:28:19Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Graph Constrained Data Representation Learning for Human Motion
Segmentation [14.611777974037194]
We propose a novel unsupervised model that learns a representation of the data and digs clustering information from the data itself.
Experimental results on four benchmark datasets for HMS demonstrate that our approach achieves significantly better clustering performance then state-of-the-art methods.
arXiv Detail & Related papers (2021-07-28T13:49:16Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Kernel Two-Dimensional Ridge Regression for Subspace Clustering [45.651770340521786]
We propose a novel subspace clustering method for 2D data.
It directly uses 2D data as inputs such that the learning of representations benefits from inherent structures and relationships of the data.
arXiv Detail & Related papers (2020-11-03T04:52:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.