Problem-tailored Simulation of Energy Transport on Noisy Quantum
Computers
- URL: http://arxiv.org/abs/2310.03924v1
- Date: Thu, 5 Oct 2023 21:57:39 GMT
- Title: Problem-tailored Simulation of Energy Transport on Noisy Quantum
Computers
- Authors: I-Chi Chen, Kl\'ee Pollock, Yong-Xin Yao, Peter P. Orth, and Thomas
Iadecola
- Abstract summary: A quantum computer can exhibit infinite trace energy relative to, e.g. the computational basis.
A renormalization strategy compensates for global nonconservation of energy due to device noise.
These techniques will prove useful beyond the specific application considered here.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The transport of conserved quantities like spin and charge is fundamental to
characterizing the behavior of quantum many-body systems. Numerically
simulating such dynamics is generically challenging, which motivates the
consideration of quantum computing strategies. However, the relatively high
gate errors and limited coherence times of today's quantum computers pose their
own challenge, highlighting the need to be frugal with quantum resources. In
this work we report simulations on quantum hardware of infinite-temperature
energy transport in the mixed-field Ising chain, a paradigmatic many-body
system that can exhibit a range of transport behaviors at intermediate times.
We consider a chain with $L=12$ sites and find results broadly consistent with
those from ideal circuit simulators over 90 Trotter steps, containing up to 990
entangling gates. To obtain these results, we use two key problem-tailored
insights. First, we identify a convenient basis$\unicode{x2013}$the Pauli $Y$
basis$\unicode{x2013}$in which to sample the infinite-temperature trace and
provide theoretical and numerical justifications for its efficiency relative
to, e.g., the computational basis. Second, in addition to a variety of
problem-agnostic error mitigation strategies, we employ a renormalization
strategy that compensates for global nonconservation of energy due to device
noise. We expect that these techniques will prove useful beyond the specific
application considered here.
Related papers
- Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions [39.58317527488534]
We propose a variational strategy based on symmetry-preserving cost functions to iteratively construct a reduced subspace for extraction of low-lying energy states.<n>As a proof of concept, we test the proposed algorithms on H4 chain and ring, targeting both the ground-state energy and the charge gap.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Observation of a non-Hermitian supersonic mode [6.846670002217106]
We demonstrate the power of variational quantum circuits for resource-efficient simulations of dynamical and equilibrium physics in non-Hermitian systems.
Using a variational quantum compilation scheme for fermionic systems, we reduce gate count, save qubits, and eliminate the need for postselection.
We provide an analytical example demonstrating that simulating single-qubit non-Hermitian dynamics for $Theta(log(n))$ time from certain initial states is exponentially hard on a quantum computer.
arXiv Detail & Related papers (2024-06-21T18:00:06Z) - Benchmarking digital quantum simulations above hundreds of qubits using quantum critical dynamics [42.29248343585333]
We benchmark quantum hardware and error mitigation techniques on up to 133 qubits.
We show reliable control up to a two-qubit gate depth of 28, featuring a maximum of 1396 two-qubit gates.
Results are transferable to applications such as Hamiltonian simulation, variational algorithms, optimization, or quantum machine learning.
arXiv Detail & Related papers (2024-04-11T18:00:05Z) - Avoiding barren plateaus via Gaussian Mixture Model [6.0599055267355695]
Variational quantum algorithms are one of the most representative algorithms in quantum computing.
They face challenges when dealing with large numbers of qubits, deep circuit layers, or global cost functions, making them often untrainable.
arXiv Detail & Related papers (2024-02-21T03:25:26Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Unimon qubit [42.83899285555746]
Superconducting qubits are one of the most promising candidates to implement quantum computers.
Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator.
arXiv Detail & Related papers (2022-03-11T12:57:43Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Simulating strongly interacting Hubbard chains with the Variational
Hamiltonian Ansatz on a quantum computer [0.0]
Variational Quantum Eigensolver (VQE) has been implemented to study molecules and condensed matter systems on small size quantum computers.
We try to answer the question: how much of the underlying physics of a 1D Hubbard chain is described by a problem-inspired Variational Hamiltonian Ansatz (VHA) in a broad range of parameter values.
Our findings suggest that even low fidelity solutions capture energy and number of doubly occupied sites well, while spin-spin correlations are not well captured even when the solution is of high fidelity.
arXiv Detail & Related papers (2021-11-23T16:54:36Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z) - Variational Quantum Eigensolver for Frustrated Quantum Systems [0.0]
A variational quantum eigensolver, or VQE, is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian.
Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions.
We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits.
arXiv Detail & Related papers (2020-05-01T18:00:01Z) - Hartree-Fock on a superconducting qubit quantum computer [30.152226344347064]
Here, we perform a series of quantum simulations of chemistry the largest of which involved a dozen qubits, 78 two-qubit gates, and 114 one-qubit gates.
We model the binding energy of $rm H_6$, $rm H_8$, $rm H_10$ and $rm H_12$ chains as well as the isomerization of diazene.
We also demonstrate error-mitigation strategies based on $N$-representability which dramatically improve the effective fidelity of our experiments.
arXiv Detail & Related papers (2020-04-08T18:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.