Observation of a non-Hermitian supersonic mode
- URL: http://arxiv.org/abs/2406.15557v1
- Date: Fri, 21 Jun 2024 18:00:06 GMT
- Title: Observation of a non-Hermitian supersonic mode
- Authors: Yuxuan Zhang, Juan Carrasquilla, Yong Baek Kim,
- Abstract summary: We demonstrate the power of variational quantum circuits for resource-efficient simulations of dynamical and equilibrium physics in non-Hermitian systems.
Using a variational quantum compilation scheme for fermionic systems, we reduce gate count, save qubits, and eliminate the need for postselection.
We provide an analytical example demonstrating that simulating single-qubit non-Hermitian dynamics for $Theta(log(n))$ time from certain initial states is exponentially hard on a quantum computer.
- Score: 6.846670002217106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers have long been anticipated to excel in simulating quantum many-body physics. While most previous work has focused on Hermitian physics, we demonstrate the power of variational quantum circuits for resource-efficient simulations of dynamical and equilibrium physics in non-Hermitian systems, revealing new phenomena beyond standard Hermitian quantum machines. Using a variational quantum compilation scheme for fermionic systems, we reduce gate count, save qubits, and eliminate the need for postselection, a major challenge in simulating non-Hermitian dynamics via standard Trotterization. Experimentally, we observed a supersonic mode in the connected density-density correlation function on an $ n = 18 $ fermionic chain after a non-Hermitian, locally interacting quench, which would otherwise be forbidden by the Lieb-Robinson bound in a Hermitian system. Additionally, we investigate sequential quantum circuits generated by tensor networks for ground state preparation, here defined as the eigenstate with the lowest real part eigenvalue, using a variance minimization scheme. Through a trapped-ion implementation on the Quantinuum H1 quantum processor, we accurately capture correlation functions and energies across an exceptional point on a dissipative spin chain up to length $ n = 20 $ using only 3 qubits. Motivated by these advancements, we provide an analytical example demonstrating that simulating single-qubit non-Hermitian dynamics for $\Theta(\log(n))$ time from certain initial states is exponentially hard on a quantum computer, offering insights into the opportunities and limitations of using quantum computation for simulating non-Hermitian physics.
Related papers
- Demonstration of a variational quantum eigensolver with a solid-state spin system under ambient conditions [15.044543674753308]
Quantum simulators offer the potential to utilize the quantum nature of a physical system to study another physical system.
The variational-quantum-eigensolver algorithm is a particularly promising application for investigating molecular electronic structures.
Spin-based solid-state qubits have the advantage of long decoherence time and high-fidelity quantum gates.
arXiv Detail & Related papers (2024-07-23T09:17:06Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum kernels for classifying dynamical singularities in a multiqubit system [0.0]
We use quantum Kernels to classify dynamical singularities of the rate function for a multiqubit system.
Our results show that this quantum dynamical critical problem can be efficiently solved using physically inspiring quantum Kernels.
arXiv Detail & Related papers (2023-10-06T15:01:37Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Holographic dynamics simulations with a trapped ion quantum computer [0.0]
We demonstrate and benchmark a new scalable quantum simulation paradigm.
Using a Honeywell trapped ion quantum processor, we simulate the non-integrable dynamics of the self-dual kicked Ising model.
Results suggest that quantum tensor network methods, together with state-of-the-art quantum processor capabilities, enable a viable path to practical quantum advantage in the near term.
arXiv Detail & Related papers (2021-05-19T18:00:02Z) - Roadmap for quantum simulation of the fractional quantum Hall effect [0.0]
A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems.
In this work, we present a detailed roadmap on how to simulate a two-dimensional electron gas---cooled to absolute zero and pierced by a strong magnetic field---on a quantum computer.
arXiv Detail & Related papers (2020-03-05T10:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.