論文の概要: Analysis of the Reasoning with Redundant Information Provided Ability of
Large Language Models
- arxiv url: http://arxiv.org/abs/2310.04039v1
- Date: Fri, 6 Oct 2023 06:20:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-10 01:25:51.309559
- Title: Analysis of the Reasoning with Redundant Information Provided Ability of
Large Language Models
- Title(参考訳): 大規模言語モデルの能力を考慮した冗長情報による推論の解析
- Authors: Wenbei Xie
- Abstract要約: 大きな言語モデル(LLM)は、さまざまな自然言語処理タスクにまたがる印象的な機能を示している。
このギャップに対処するため,Reasoning with Redundant Information Provided (RRIP) と呼ばれる新しいQAタスクが導入された。
本研究は,LlaMA2-13B-chatとGPT-3.5 (generative pre-trained transformer 3.5)の2つのLLMを評価し,従来のQAタスクとRRIPタスクとの対比を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have demonstrated
impressive capabilities across a range of natural language processing tasks,
especially in reasoning, a cornerstone for achieving Artificial General
Intelligence (AGI). However, commonly used benchmarks may not fully encapsulate
the inferential abilities of these models in real-world scenarios. To address
this gap, a new form of Question-Answering (QA) task, termed Reasoning with
Redundant Information Provided (RRIP), is introduced. The study designed a
modified version of the grade school math 8K (GSM-8K) dataset which has several
variants focusing on different attributes of redundant information. This
investigation evaluates two popular LLMs, LlaMA2-13B-chat and generative
pre-trained transformer 3.5 (GPT-3.5), contrasting their performance on
traditional QA tasks against the RRIP tasks. Findings indicate that while these
models achieved moderate success on standard QA benchmarks, their performance
notably declines when assessed on RRIP tasks. The study not only highlights the
limitations of current LLMs in handling redundant information but also suggests
that future training of these models should focus on incorporating redundant
information into the training data to increase the performance on RRIP tasks.
- Abstract(参考訳): 近年のLLM(Large Language Models)の進歩は、自然言語処理タスク、特に推論において、人工知能(Artificial General Intelligence, AGI)を実現するための基盤において、目覚ましい能力を示している。
しかし、一般的に使用されるベンチマークでは、実際のシナリオでこれらのモデルの推論能力を完全にカプセル化することはできない。
このギャップに対処するため,Reasoning with Redundant Information Provided (RRIP) と呼ばれる新しいQAタスクが導入された。
この研究は、冗長情報の異なる属性に着目したいくつかの変種を持つ小学校数学8K(GSM-8K)データセットの修正版を設計した。
本研究は,LlaMA2-13B-chatとGPT-3.5 (Generative Pre-trained Transformer 3.5)の2つのLLMを評価し,従来のQAタスクとRRIPタスクとの対比を行った。
これらのモデルが標準QAベンチマークで適度に成功したが、RRIPタスクで評価すると明らかに性能が低下している。
この研究は、冗長な情報を扱う際の現在のLLMの限界を強調するだけでなく、これらのモデルの将来のトレーニングは、RRIPタスクのパフォーマンスを向上させるために、冗長な情報をトレーニングデータに組み込むことに焦点を当てるべきであることを示唆している。
関連論文リスト
- Towards Robust Extractive Question Answering Models: Rethinking the Training Methodology [0.34530027457862006]
従来の研究によると、既存のモデルは、答えがつかない質問を含むEQAデータセットでトレーニングされた場合、ロバスト性の著しい欠如を示している。
提案手法は,EQA問題に対する新たな損失関数を含み,多数のEQAデータセットに存在する暗黙の仮定に挑戦する。
本モデルでは,2種類の敵攻撃に対するロバスト性が有意に向上し,デフォルトモデルに比べて性能は3分の1程度低下した。
論文 参考訳(メタデータ) (2024-09-29T20:35:57Z) - Rephrase and Contrast: Fine-Tuning Language Models for Enhanced Understanding of Communication and Computer Networks [13.829525575305206]
本稿では,効率的な微調整フレームワークであるRephrase and Contrast(RaC)フレームワークについて紹介する。
RaCは質問の修正と対照的な分析を取り入れることでLLMの理解と批判的思考能力を高める。
本稿では,RaC微調整のためのデータセットを効率的に構築するために,高品質な質問応答対を生成するためのGPT支援データマイニング法を開発した。
論文 参考訳(メタデータ) (2024-09-21T16:04:43Z) - P-RAG: Progressive Retrieval Augmented Generation For Planning on Embodied Everyday Task [94.08478298711789]
Embodied Everyday Taskは、インボディードAIコミュニティで人気のあるタスクである。
自然言語命令は明示的なタスクプランニングを欠くことが多い。
タスク環境に関する知識をモデルに組み込むには、広範囲なトレーニングが必要である。
論文 参考訳(メタデータ) (2024-09-17T15:29:34Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - Improving Retrieval Augmented Language Model with Self-Reasoning [20.715106330314605]
本稿では,ALMの信頼性とトレーサビリティ向上を目的とした,新たな自己推論フレームワークを提案する。
このフレームワークは、関連性を認識したプロセス、エビデンスを認識した選択プロセス、軌跡解析プロセスの3つのプロセスで自己推論軌道を構築することを含む。
提案手法の優位性を示すため,4つの公開データセットにまたがるフレームワークの評価を行った。
論文 参考訳(メタデータ) (2024-07-29T09:05:10Z) - MMAU: A Holistic Benchmark of Agent Capabilities Across Diverse Domains [54.117238759317004]
大規模マルチタスクエージェント理解(MMAU)ベンチマークは、複雑な環境設定を必要としない包括的なオフラインタスクを特徴としている。
ツールユース、DAG(Directed Acyclic Graph)QA、データサイエンスと機械学習コーディング、コンテストレベルのプログラミング、数学の5分野にわたるモデルを評価する。
3K以上の異なるプロンプトを含む20の精巧に設計されたタスクにより、MMAUはLLMエージェントの強度と限界を評価するための包括的なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-07-18T00:58:41Z) - Language Models can Exploit Cross-Task In-context Learning for Data-Scarce Novel Tasks [22.66167973623777]
LLM(Large Language Models)は、ICL(In-context Learning)機能によってNLPを変換した。
本稿では,予め定義されたタスクのラベル付き例から新しいタスクまで,LLMが一般化できるかどうかを検討する。
LLaMA-2 7Bは107%, LLaMA-2 13Bは18.6%, GPT3.5は3.2%であった。
論文 参考訳(メタデータ) (2024-05-17T05:20:49Z) - Enhancing Textbook Question Answering Task with Large Language Models
and Retrieval Augmented Generation [3.948068081583197]
本稿では,テキスト質問応答(TQA)における領域外シナリオを扱う手法を提案する。
LLMモデルLlama-2の微調整とRAGの導入により、我々のアーキテクチャはベースラインよりも優れ、検証セットでは4.12%、非ダイアグラム多重選択質問では9.84%の精度向上を実現している。
論文 参考訳(メタデータ) (2024-02-05T11:58:56Z) - Information Association for Language Model Updating by Mitigating
LM-Logical Discrepancy [68.31760483418901]
大規模言語モデル(LLM)は、時代遅れの事前学習データのために現在の情報を提供するのに苦労する。
知識編集や連続的な微調整など,従来のLCMの更新方法は,新たな情報の一般化に重大な欠点がある。
これらの欠点の中核となる課題は,言語モデリングの確率と論理的確率の差を特徴とするLM論理的相違である。
論文 参考訳(メタデータ) (2023-05-29T19:48:37Z) - Learning to Perturb Word Embeddings for Out-of-distribution QA [55.103586220757464]
本論文では,入力問題と文脈の単語埋め込みを意味論を変化させることなく学習するノイズ発生器に基づく簡便かつ効果的なDA法を提案する。
ひとつのソースデータセットに,5つの異なるターゲットドメインに埋め込むことで,トレーニングされたQAモデルのパフォーマンスを検証する。
特に、私たちのトレーニングを受けたモデルは、240K以上の人工的なQAペアでトレーニングされたモデルよりも優れています。
論文 参考訳(メタデータ) (2021-05-06T14:12:26Z) - Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks [133.93803565077337]
検索強化生成モデルは、事前訓練されたパラメトリックメモリと非パラメトリックメモリを組み合わせて言語生成を行う。
我々は、RAGモデルが、最先端パラメトリックのみのセク2セックベースラインよりも、より具体的で、多様で、現実的な言語を生成することを示す。
論文 参考訳(メタデータ) (2020-05-22T21:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。