Bringing Quantum Algorithms to Automated Machine Learning: A Systematic
Review of AutoML Frameworks Regarding Extensibility for QML Algorithms
- URL: http://arxiv.org/abs/2310.04238v1
- Date: Fri, 6 Oct 2023 13:21:16 GMT
- Title: Bringing Quantum Algorithms to Automated Machine Learning: A Systematic
Review of AutoML Frameworks Regarding Extensibility for QML Algorithms
- Authors: Dennis Klau, Marc Z\"oller, Christian Tutschku
- Abstract summary: This work describes the selection approach and analysis of existing AutoML frameworks regarding their capability of incorporating Quantum Machine Learning (QML) algorithms.
For that, available open-source tools are condensed into a market overview and suitable frameworks are systematically selected on a multi-phase, multi-criteria approach.
We build an extended Automated Quantum Machine Learning (AutoQML) framework with QC-specific pipeline steps and decision characteristics for hardware and software constraints.
- Score: 1.4469725791865982
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work describes the selection approach and analysis of existing AutoML
frameworks regarding their capability of a) incorporating Quantum Machine
Learning (QML) algorithms into this automated solving approach of the AutoML
framing and b) solving a set of industrial use-cases with different ML problem
types by benchmarking their most important characteristics. For that, available
open-source tools are condensed into a market overview and suitable frameworks
are systematically selected on a multi-phase, multi-criteria approach. This is
done by considering software selection approaches, as well as in terms of the
technical perspective of AutoML. The requirements for the framework selection
are divided into hard and soft criteria regarding their software and ML
attributes. Additionally, a classification of AutoML frameworks is made into
high- and low-level types, inspired by the findings of. Finally, we select Ray
and AutoGluon as the suitable low- and high-level frameworks respectively, as
they fulfil all requirements sufficiently and received the best evaluation
feedback during the use-case study. Based on those findings, we build an
extended Automated Quantum Machine Learning (AutoQML) framework with
QC-specific pipeline steps and decision characteristics for hardware and
software constraints.
Related papers
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
Automated machine learning (AutoML) accelerates AI development by automating tasks in the development pipeline.
Recent works have started exploiting large language models (LLM) to lessen such burden.
This paper proposes AutoML-Agent, a novel multi-agent framework tailored for full-pipeline AutoML.
arXiv Detail & Related papers (2024-10-03T20:01:09Z) - Position: A Call to Action for a Human-Centered AutoML Paradigm [83.78883610871867]
Automated machine learning (AutoML) was formed around the fundamental objectives of automatically and efficiently configuring machine learning (ML)
We argue that a key to unlocking AutoML's full potential lies in addressing the currently underexplored aspect of user interaction with AutoML systems.
arXiv Detail & Related papers (2024-06-05T15:05:24Z) - MarkLLM: An Open-Source Toolkit for LLM Watermarking [80.00466284110269]
MarkLLM is an open-source toolkit for implementing LLM watermarking algorithms.
For evaluation, MarkLLM offers a comprehensive suite of 12 tools spanning three perspectives, along with two types of automated evaluation pipelines.
arXiv Detail & Related papers (2024-05-16T12:40:01Z) - Automated Machine Learning for Multi-Label Classification [3.2634122554914002]
We devise a novel AutoML approach for single-label classification tasks, consisting of two algorithms at most.
We investigate how well AutoML approaches that form the state of the art for single-label classification tasks scale with the increased problem complexity of AutoML for multi-label classification.
arXiv Detail & Related papers (2024-02-28T09:40:36Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoAct is an automatic agent learning framework for QA.
It does not rely on large-scale annotated data and synthetic planning trajectories from closed-source models.
arXiv Detail & Related papers (2024-01-10T16:57:24Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - Automatic Componentwise Boosting: An Interpretable AutoML System [1.1709030738577393]
We propose an AutoML system that constructs an interpretable additive model that can be fitted using a highly scalable componentwise boosting algorithm.
Our system provides tools for easy model interpretation such as visualizing partial effects and pairwise interactions.
Despite its restriction to an interpretable model space, our system is competitive in terms of predictive performance on most data sets.
arXiv Detail & Related papers (2021-09-12T18:34:33Z) - Naive Automated Machine Learning -- A Late Baseline for AutoML [0.0]
Automated Machine Learning (AutoML) is the problem of automatically finding the pipeline with the best generalization performance on some given dataset.
We present Naive AutoML, a very simple solution to AutoML that exploits important meta-knowledge about machine learning problems.
arXiv Detail & Related papers (2021-03-18T19:52:12Z) - Robusta: Robust AutoML for Feature Selection via Reinforcement Learning [24.24652530951966]
We propose the first robust AutoML framework, Robusta--based on reinforcement learning (RL)
We show that the framework is able to improve the model robustness by up to 22% while maintaining competitive accuracy on benign samples.
arXiv Detail & Related papers (2021-01-15T03:12:29Z) - Resource-Aware Pareto-Optimal Automated Machine Learning Platform [1.6746303554275583]
novel platform Resource-Aware AutoML (RA-AutoML)
RA-AutoML enables flexible and generalized algorithms to build machine learning models subjected to multiple objectives.
arXiv Detail & Related papers (2020-10-30T19:37:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.