論文の概要: Deep learning modelling of tip clearance variations on multi-stage axial
compressors aerodynamics
- arxiv url: http://arxiv.org/abs/2310.04264v2
- Date: Mon, 16 Oct 2023 10:15:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-18 02:47:33.965907
- Title: Deep learning modelling of tip clearance variations on multi-stage axial
compressors aerodynamics
- Title(参考訳): 多段軸圧縮機空気力学における先端クリアランス変動の深層学習モデル
- Authors: Giuseppe Bruni, Sepehr Maleki, Senthil K. Krishnababu
- Abstract要約: 本稿では,先端クリアランス変動が流れ場に与える影響をリアルタイムに予測するためのディープラーニングフレームワークの開発と応用について述べる。
提案したアーキテクチャは産業用アプリケーションにスケーラブルであることが証明されており、CFDベンチマークに匹敵する精度で実現されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Application of deep learning methods to physical simulations such as CFD
(Computational Fluid Dynamics) for turbomachinery applications, have been so
far of limited industrial relevance. This paper demonstrates the development
and application of a deep learning framework for real-time predictions of the
impact of tip clearance variations on the flow field and aerodynamic
performance of multi-stage axial compressors in gas turbines. The proposed
architecture is proven to be scalable to industrial applications, and achieves
in real-time accuracy comparable to the CFD benchmark. The deployed model, is
readily integrated within the manufacturing and build process of gas turbines,
thus providing the opportunity to analytically assess the impact on performance
and potentially reduce requirements for expensive physical tests.
- Abstract(参考訳): CFD(Computational Fluid Dynamics)などの物理シミュレーションにおける深層学習法のターボ機械への応用は,産業的関連性に限界がある。
本稿では,ガスタービン用多段軸圧縮機の流動場および空力性能に及ぼす先端クリアランス変動の影響をリアルタイムに予測するための深層学習フレームワークの開発と応用について述べる。
提案するアーキテクチャは,産業アプリケーションにスケーラブルであることが証明されており,cfdベンチマークに匹敵するリアルタイム精度を実現している。
デプロイされたモデルは、ガスタービンの製造および製造プロセスに容易に統合され、パフォーマンスへの影響を分析的に評価し、高価な物理テストの要件を削減できる機会を提供する。
関連論文リスト
- A physics-informed machine learning model for reconstruction of dynamic
loads [0.0]
本稿では, 物理インフォームド・マシン・ラーニング・フレームワークを用いて, 測定された偏向, 速度, 加速度に基づいて動的力の再構成を行う。
このフレームワークは不完全で汚染されたデータを扱うことができ、ノイズ測定システムを考慮した自然な正規化手法を提供する。
開発されたフレームワークには、設計モデルと仮定、損傷検出と健康モニタリングを支援するための応答の予後が含まれる。
論文 参考訳(メタデータ) (2023-08-15T18:33:58Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - C(NN)FD -- a deep learning framework for turbomachinery CFD analysis [0.0]
本稿では, ガスタービンの軸圧縮機全体の性能に及ぼす製造・施工の変動の影響をリアルタイムに予測するための新しいディープラーニングフレームワークの開発について述べる。
関連した効率の散乱はCO2排出量を大幅に増加させ、工業的および環境的関連性が高い。
提案したC(NN)FDアーキテクチャはCFDベンチマークに匹敵するリアルタイムの精度を実現する。
論文 参考訳(メタデータ) (2023-06-09T13:35:04Z) - Machine learning enabled experimental design and parameter estimation
for ultrafast spin dynamics [54.172707311728885]
機械学習とベイズ最適実験設計(BOED)を組み合わせた方法論を提案する。
本手法は,大規模スピンダイナミクスシミュレーションのためのニューラルネットワークモデルを用いて,BOEDの正確な分布と実用計算を行う。
数値ベンチマークでは,XPFS実験の誘導,モデルパラメータの予測,実験時間内でのより情報的な測定を行う上で,本手法の優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-03T06:19:20Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
炭素捕獲貯蔵(CCS)は、地球規模の脱炭酸に不可欠な役割を担っている。
CCS展開のスケールアップには, 貯留層圧力上昇とガス配管マイグレーションの高精度かつ高精度なモデリングが必要である。
我々は,高分解能な3D CO2ストレージモデリングのための機械学習フレームワークであるNested Fourier Neural Operator (FNO)を,盆地スケールで導入した。
論文 参考訳(メタデータ) (2022-10-31T04:04:03Z) - Single Frame Atmospheric Turbulence Mitigation: A Benchmark Study and A
New Physics-Inspired Transformer Model [82.23276183684001]
本研究では,大気乱流の画像化のための物理インスピレーション付き変圧器モデルを提案する。
提案ネットワークは変圧器ブロックのパワーを利用して動的乱流歪みマップを共同で抽出する。
そこで本研究では,従来の客観的指標と,テキスト認識精度を用いたタスク駆動計測の両方で評価可能な,実世界の乱流データセットを新たに2つ提示する。
論文 参考訳(メタデータ) (2022-07-20T17:09:16Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Explainable Artificial Intelligence for Exhaust Gas Temperature of
Turbofan Engines [0.0]
記号回帰は「ブラックボックス」モデルの解釈可能な代替品である。
本研究では, 実寿命排ガス温度(EGT)データにSRを適用し, 飛行全体を通して高周波数で収集する。
その結果, 3degCの絶対差は, モデル精度に有意な結果が得られた。
論文 参考訳(メタデータ) (2022-03-24T15:05:32Z) - A Numerical Proof of Shell Model Turbulence Closure [41.94295877935867]
本稿では, 統計誤差, ユーレリアおよびラグランジアン構造関数, エネルギーカスケードの断続統計を定量的に再現するディープリカレントニューラルネットワークに基づく閉包を提案する。
本研究は,3次元ナビエ-ストークス乱流に対する類似した手法の開発を奨励するものである。
論文 参考訳(メタデータ) (2022-02-18T16:31:57Z) - Airfoil's Aerodynamic Coefficients Prediction using Artificial Neural
Network [0.0]
右翼を見つけることは、あらゆる航空機の設計の予備段階における重要なステップである。
本研究では、異なるネットワークアーキテクチャとトレーニングデータセットを比較し、ネットワークが与えられた翼のジオメトリをどのように知覚するかについての洞察を得る。
論文 参考訳(メタデータ) (2021-09-24T19:07:19Z) - Automating Turbulence Modeling by Multi-Agent Reinforcement Learning [4.784658158364452]
乱流モデルの自動検出ツールとしてマルチエージェント強化学習を導入する。
等方性乱流と等方性乱流の大規模渦シミュレーションにおけるこのアプローチの可能性を示す。
論文 参考訳(メタデータ) (2020-05-18T18:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。