論文の概要: C(NN)FD -- a deep learning framework for turbomachinery CFD analysis
- arxiv url: http://arxiv.org/abs/2306.05889v2
- Date: Fri, 17 May 2024 14:21:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 20:43:15.542325
- Title: C(NN)FD -- a deep learning framework for turbomachinery CFD analysis
- Title(参考訳): ターボ機械CFD解析のためのディープラーニングフレームワークC(NN)FD
- Authors: Giuseppe Bruni, Sepehr Maleki, Senthil K. Krishnababu,
- Abstract要約: 本稿では, ガスタービンの軸圧縮機全体の性能に及ぼす製造・施工の変動の影響をリアルタイムに予測するための新しいディープラーニングフレームワークの開発について述べる。
関連した効率の散乱はCO2排出量を大幅に増加させ、工業的および環境的関連性が高い。
提案したC(NN)FDアーキテクチャはCFDベンチマークに匹敵するリアルタイムの精度を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Learning methods have seen a wide range of successful applications across different industries. Up until now, applications to physical simulations such as CFD (Computational Fluid Dynamics), have been limited to simple test-cases of minor industrial relevance. This paper demonstrates the development of a novel deep learning framework for real-time predictions of the impact of manufacturing and build variations on the overall performance of axial compressors in gas turbines, with a focus on tip clearance variations. The associated scatter in efficiency can significantly increase the CO2 emissions, thus being of great industrial and environmental relevance. The proposed C(NN)FD architecture achieves in real-time accuracy comparable to the CFD benchmark. Predicting the flow field and using it to calculate the corresponding overall performance renders the methodology generalisable, while filtering only relevant parts of the CFD solution makes the methodology scalable to industrial applications.
- Abstract(参考訳): ディープ・ラーニングの手法は様々な産業で様々な応用が成功している。
これまで、CFD(Computational Fluid Dynamics)のような物理シミュレーションへの応用は、小さな産業関連性の単純なテストケースに限られてきた。
本稿では, ガスタービンの軸圧縮機全体の性能に及ぼす製造・施工の変動の影響をリアルタイムに予測するための新しいディープラーニングフレームワークを開発し, 先端クリアランスの変動に着目した。
関連した効率の散乱はCO2排出量を大幅に増加させ、工業的および環境的関連性が高い。
提案したC(NN)FDアーキテクチャはCFDベンチマークに匹敵するリアルタイムの精度を実現する。
フローフィールドを予測し、それを使用して全体的なパフォーマンスを計算すると、方法論は一般化できるが、CFDソリューションの関連する部分のみをフィルタリングすることで、方法論は産業アプリケーションにスケーラブルになる。
関連論文リスト
- Using Parametric PINNs for Predicting Internal and External Turbulent Flows [6.387263468033964]
提案するRANS-PINNフレームワークは,シリンダー上の流れの予測にのみ焦点をあてたものである。
本研究では,内流と外流の双方に対して,関連する乱流変数を予測する際の精度について検討する。
論文 参考訳(メタデータ) (2024-10-24T17:08:20Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
パラメータ効率の細かいチューニング(PEFT)は、パラメータの選択したサブセットを最適化し、残りを固定し、計算とストレージのオーバーヘッドを大幅に削減することに焦点を当てている。
分解の観点からそれらを分離することで、すべてのアプローチを統一する第一歩を踏み出します。
本稿では,PEFT技術の性能向上を目的とした,単純かつ効果的なフレームワークとともに,新しい2つのPEFT手法を提案する。
論文 参考訳(メタデータ) (2024-07-07T15:44:42Z) - Deep learning modelling of manufacturing and build variations on multi-stage axial compressors aerodynamics [0.0]
本稿では,多段軸圧縮機の流れ場および空力特性予測のためのディープラーニングフレームワークの開発と応用について述べる。
物理に基づく次元の減少は、流れ場予測の可能性を解き放つ。
提案アーキテクチャは,産業関連アプリケーションに対して,CFDベンチマークに匹敵する精度をリアルタイムに達成できることが証明されている。
論文 参考訳(メタデータ) (2023-10-06T14:11:21Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
SSLとDCのパラダイム間の相互作用に関する新しい視点を提示する。
SSL設定において、スクラッチから高密度かつゲートされたサブネットワークを同時に学習することは可能であることを示す。
密集エンコーダとゲートエンコーダの事前学習における共進化は、良好な精度と効率のトレードオフをもたらす。
論文 参考訳(メタデータ) (2023-01-22T17:12:58Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
本稿では,既存の複雑な相互作用モデルから,知識蒸留によるCTR予測のための高次特徴相互作用を学習するための非巡回グラフファクトリゼーションマシン(KD-DAGFM)を提案する。
KD-DAGFMは、オンラインとオフラインの両方の実験において、最先端のFLOPの21.5%未満で最高の性能を達成する。
論文 参考訳(メタデータ) (2022-11-21T03:09:42Z) - HFedMS: Heterogeneous Federated Learning with Memorable Data Semantics
in Industrial Metaverse [49.1501082763252]
本稿では,新しい産業メタバースに実用FLを取り入れたHFEDMSを提案する。
動的グルーピングとトレーニングモード変換によってデータの均一性を低下させる。
そして、圧縮された履歴データセマンティクスを融合することで、忘れられた知識を補う。
ストリームされた非I.d.FEMNISTデータセットに対して,368個のシミュレーションデバイスを用いて実験を行った。
論文 参考訳(メタデータ) (2022-11-07T04:33:24Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
炭素捕獲貯蔵(CCS)は、地球規模の脱炭酸に不可欠な役割を担っている。
CCS展開のスケールアップには, 貯留層圧力上昇とガス配管マイグレーションの高精度かつ高精度なモデリングが必要である。
我々は,高分解能な3D CO2ストレージモデリングのための機械学習フレームワークであるNested Fourier Neural Operator (FNO)を,盆地スケールで導入した。
論文 参考訳(メタデータ) (2022-10-31T04:04:03Z) - Using Gradient to Boost the Generalization Performance of Deep Learning
Models for Fluid Dynamics [0.0]
本稿では,Deep Learningの一般化能力を高めるための新しい研究について述べる。
我々の戦略は、DLネットワークのより良い一般化に向けた良い結果を示している。
論文 参考訳(メタデータ) (2022-10-09T10:20:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。