NetDiffus: Network Traffic Generation by Diffusion Models through
Time-Series Imaging
- URL: http://arxiv.org/abs/2310.04429v1
- Date: Sat, 23 Sep 2023 18:13:12 GMT
- Title: NetDiffus: Network Traffic Generation by Diffusion Models through
Time-Series Imaging
- Authors: Nirhoshan Sivaroopan, Dumindu Bandara, Chamara Madarasingha, Guilluame
Jourjon, Anura Jayasumana and Kanchana Thilakarathna
- Abstract summary: We develop an end-to-end framework - NetDiffus that converts one-dimensional time-series network traffic into two-dimensional images, and then synthesizes representative images for the original data.
We demonstrate that NetDiffus outperforms the state-of-the-art traffic generation methods based on Generative Adversarial Networks (GANs) by providing 66.4% increase in fidelity of the generated data and 18.1% increase in downstream machine learning tasks.
- Score: 3.208802773440937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Network data analytics are now at the core of almost every networking
solution. Nonetheless, limited access to networking data has been an enduring
challenge due to many reasons including complexity of modern networks,
commercial sensitivity, privacy and regulatory constraints. In this work, we
explore how to leverage recent advancements in Diffusion Models (DM) to
generate synthetic network traffic data. We develop an end-to-end framework -
NetDiffus that first converts one-dimensional time-series network traffic into
two-dimensional images, and then synthesizes representative images for the
original data. We demonstrate that NetDiffus outperforms the state-of-the-art
traffic generation methods based on Generative Adversarial Networks (GANs) by
providing 66.4% increase in fidelity of the generated data and 18.1% increase
in downstream machine learning tasks. We evaluate NetDiffus on seven diverse
traffic traces and show that utilizing synthetic data significantly improves
traffic fingerprinting, anomaly detection and traffic classification.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Lens: A Foundation Model for Network Traffic [19.3652490585798]
Lens is a foundation model for network traffic that leverages the T5 architecture to learn the pre-trained representations from large-scale unlabeled data.
We design a novel loss that combines three distinct tasks: Masked Span Prediction (MSP), Packet Order Prediction (POP), and Homologous Traffic Prediction (HTP)
arXiv Detail & Related papers (2024-02-06T02:45:13Z) - NetGPT: Generative Pretrained Transformer for Network Traffic [4.205009931131087]
Pretrained models for network traffic can utilize large-scale raw data to learn the essential characteristics of network traffic.
In this paper, we make the first attempt to provide a generative pretrained model NetGPT for both traffic understanding and generation tasks.
arXiv Detail & Related papers (2023-04-19T09:04:30Z) - Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic
Forecasting [27.82230529014677]
The ability to forecast the state of traffic in a road network is an important functionality and a challenging task.
Recent proposals on spatial-temporal graph neural networks have achieved great progress at modeling complex spatial-temporal correlations in traffic data.
We propose a novel Decoupled Spatial-Temporal Framework (DSTF) that separates the diffusion and inherent traffic information in a data-driven manner.
arXiv Detail & Related papers (2022-06-18T04:14:38Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Data-Driven Traffic Assignment: A Novel Approach for Learning Traffic
Flow Patterns Using a Graph Convolutional Neural Network [1.3706331473063877]
We present a novel data-driven approach of learning traffic flow patterns of a transportation network.
We develop a neural network-based framework known as Graph Convolutional Neural Network (GCNN) to solve it.
When the training of the model is complete, it can instantly determine the traffic flows of a large-scale network.
arXiv Detail & Related papers (2022-02-21T19:45:15Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - TrafficStream: A Streaming Traffic Flow Forecasting Framework Based on
Graph Neural Networks and Continual Learning [10.205873494981633]
We propose a Streaming Traffic Flow Forecasting Framework, TrafficStream, based on Graph Neural Networks (GNNs) and Continual Learning (CL)
A JS-divergence-based algorithm is proposed to mine new traffic patterns.
We construct a streaming traffic dataset to verify the efficiency and effectiveness of our model.
arXiv Detail & Related papers (2021-06-11T09:42:37Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Deep traffic light detection by overlaying synthetic context on
arbitrary natural images [49.592798832978296]
We propose a method to generate artificial traffic-related training data for deep traffic light detectors.
This data is generated using basic non-realistic computer graphics to blend fake traffic scenes on top of arbitrary image backgrounds.
It also tackles the intrinsic data imbalance problem in traffic light datasets, caused mainly by the low amount of samples of the yellow state.
arXiv Detail & Related papers (2020-11-07T19:57:22Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
Modern deep convolutional networks (CNNs) are often criticized for not generalizing under distributional shifts.
We study the interplay between out-of-distribution and transfer performance of modern image classification CNNs for the first time.
We find that increasing both the training set and model sizes significantly improve the distributional shift robustness.
arXiv Detail & Related papers (2020-07-16T18:39:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.