Simultaneous Dimensionality Reduction: A Data Efficient Approach for Multimodal Representations Learning
- URL: http://arxiv.org/abs/2310.04458v3
- Date: Wed, 4 Sep 2024 02:23:50 GMT
- Title: Simultaneous Dimensionality Reduction: A Data Efficient Approach for Multimodal Representations Learning
- Authors: Eslam Abdelaleem, Ahmed Roman, K. Michael Martini, Ilya Nemenman,
- Abstract summary: We explore two primary classes of approaches to dimensionality reduction (DR): Independent Dimensionality Reduction (IDR) and Simultaneous Dimensionality Reduction (SDR)
In IDR, each modality is compressed independently, striving to retain as much variation within each modality as possible.
In SDR, one simultaneously compresses the modalities to maximize the covariation between the reduced descriptions while paying less attention to how much individual variation is preserved.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore two primary classes of approaches to dimensionality reduction (DR): Independent Dimensionality Reduction (IDR) and Simultaneous Dimensionality Reduction (SDR). In IDR methods, of which Principal Components Analysis is a paradigmatic example, each modality is compressed independently, striving to retain as much variation within each modality as possible. In contrast, in SDR, one simultaneously compresses the modalities to maximize the covariation between the reduced descriptions while paying less attention to how much individual variation is preserved. Paradigmatic examples include Partial Least Squares and Canonical Correlations Analysis. Even though these DR methods are a staple of statistics, their relative accuracy and data set size requirements are poorly understood. We introduce a generative linear model to synthesize multimodal data with known variance and covariance structures to examine these questions. We assess the accuracy of the reconstruction of the covariance structures as a function of the number of samples, signal-to-noise ratio, and the number of varying and covarying signals in the data. Using numerical experiments, we demonstrate that linear SDR methods consistently outperform linear IDR methods and yield higher-quality, more succinct reduced-dimensional representations with smaller datasets. Remarkably, regularized CCA can identify low-dimensional weak covarying structures even when the number of samples is much smaller than the dimensionality of the data, which is a regime challenging for all dimensionality reduction methods. Our work corroborates and explains previous observations in the literature that SDR can be more effective in detecting covariation patterns in data. These findings suggest that SDR should be preferred to IDR in real-world data analysis when detecting covariation is more important than preserving variation.
Related papers
- Adaptive debiased SGD in high-dimensional GLMs with streaming data [4.704144189806667]
We introduce a novel approach to online inference in high-dimensional generalized linear models.
Our method operates in a single-pass mode, significantly reducing both time and space complexity.
We demonstrate that our method, termed the Approximated Debiased Lasso (ADL), not only mitigates the need for the bounded individual probability condition but also significantly improves numerical performance.
arXiv Detail & Related papers (2024-05-28T15:36:48Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
We propose a transport-based IV estimator that takes into account the geometry of the data manifold through data-derivative information.
We provide a simple plug-and-play implementation of our method that performs on par with related estimators in standard settings.
arXiv Detail & Related papers (2024-05-19T17:49:33Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Contrastive inverse regression for dimension reduction [0.0]
We propose a supervised dimension reduction method called contrastive inverse regression (CIR) specifically designed for the contrastive setting.
CIR introduces an optimization problem defined on the Stiefel manifold with a non-standard loss function.
We prove the convergence of CIR to a local optimum using a gradient descent-based algorithm, and our numerical study empirically demonstrates the improved performance over competing methods for high-dimensional data.
arXiv Detail & Related papers (2023-05-20T21:44:11Z) - Dimensionality Reduction as Probabilistic Inference [10.714603218784175]
Dimensionality reduction (DR) algorithms compress high-dimensional data into a lower dimensional representation while preserving important features of the data.
We introduce the ProbDR variational framework, which interprets a wide range of classical DR algorithms as probabilistic inference algorithms in this framework.
arXiv Detail & Related papers (2023-04-15T23:48:59Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z) - Evaluating representations by the complexity of learning low-loss
predictors [55.94170724668857]
We consider the problem of evaluating representations of data for use in solving a downstream task.
We propose to measure the quality of a representation by the complexity of learning a predictor on top of the representation that achieves low loss on a task of interest.
arXiv Detail & Related papers (2020-09-15T22:06:58Z) - Longitudinal Variational Autoencoder [1.4680035572775534]
A common approach to analyse high-dimensional data that contains missing values is to learn a low-dimensional representation using variational autoencoders (VAEs)
Standard VAEs assume that the learnt representations are i.i.d., and fail to capture the correlations between the data samples.
We propose the Longitudinal VAE (L-VAE), that uses a multi-output additive Gaussian process (GP) prior to extend the VAE's capability to learn structured low-dimensional representations.
Our approach can simultaneously accommodate both time-varying shared and random effects, produce structured low-dimensional representations
arXiv Detail & Related papers (2020-06-17T10:30:14Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
We propose a deep dimension reduction approach to learning representations with essential characteristics.
The proposed approach is a nonparametric generalization of the sufficient dimension reduction method.
We show that the estimated deep nonparametric representation is consistent in the sense that its excess risk converges to zero.
arXiv Detail & Related papers (2020-06-10T14:47:43Z) - D-GCCA: Decomposition-based Generalized Canonical Correlation Analysis
for Multi-view High-dimensional Data [11.184915338554422]
A popular model in high-dimensional multi-view data analysis decomposes each view's data matrix into a low-rank common-source matrix generated by latent factors common across all data views.
We propose a novel decomposition method for this model, called decomposition-based generalized canonical correlation analysis (D-GCCA)
Our D-GCCA takes one step further than generalized canonical correlation analysis by separating common and distinctive components among canonical variables.
arXiv Detail & Related papers (2020-01-09T06:35:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.