Contrastive inverse regression for dimension reduction
- URL: http://arxiv.org/abs/2305.12287v1
- Date: Sat, 20 May 2023 21:44:11 GMT
- Title: Contrastive inverse regression for dimension reduction
- Authors: Sam Hawke, Hengrui Luo and Didong Li
- Abstract summary: We propose a supervised dimension reduction method called contrastive inverse regression (CIR) specifically designed for the contrastive setting.
CIR introduces an optimization problem defined on the Stiefel manifold with a non-standard loss function.
We prove the convergence of CIR to a local optimum using a gradient descent-based algorithm, and our numerical study empirically demonstrates the improved performance over competing methods for high-dimensional data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised dimension reduction (SDR) has been a topic of growing interest in
data science, as it enables the reduction of high-dimensional covariates while
preserving the functional relation with certain response variables of interest.
However, existing SDR methods are not suitable for analyzing datasets collected
from case-control studies. In this setting, the goal is to learn and exploit
the low-dimensional structure unique to or enriched by the case group, also
known as the foreground group. While some unsupervised techniques such as the
contrastive latent variable model and its variants have been developed for this
purpose, they fail to preserve the functional relationship between the
dimension-reduced covariates and the response variable. In this paper, we
propose a supervised dimension reduction method called contrastive inverse
regression (CIR) specifically designed for the contrastive setting. CIR
introduces an optimization problem defined on the Stiefel manifold with a
non-standard loss function. We prove the convergence of CIR to a local optimum
using a gradient descent-based algorithm, and our numerical study empirically
demonstrates the improved performance over competing methods for
high-dimensional data.
Related papers
- Dimension reduction via score ratio matching [0.9012198585960441]
We propose a framework, derived from score-matching, to extend gradient-based dimension reduction to problems where gradients are unavailable.
We show that our approach outperforms standard score-matching for problems with low-dimensional structure.
arXiv Detail & Related papers (2024-10-25T22:21:03Z) - Adaptive debiased SGD in high-dimensional GLMs with streaming data [4.704144189806667]
We introduce a novel approach to online inference in high-dimensional generalized linear models.
Our method operates in a single-pass mode, significantly reducing both time and space complexity.
We demonstrate that our method, termed the Approximated Debiased Lasso (ADL), not only mitigates the need for the bounded individual probability condition but also significantly improves numerical performance.
arXiv Detail & Related papers (2024-05-28T15:36:48Z) - Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein [56.62376364594194]
Unsupervised learning aims to capture the underlying structure of potentially large and high-dimensional datasets.
In this work, we revisit these approaches under the lens of optimal transport and exhibit relationships with the Gromov-Wasserstein problem.
This unveils a new general framework, called distributional reduction, that recovers DR and clustering as special cases and allows addressing them jointly within a single optimization problem.
arXiv Detail & Related papers (2024-02-03T19:00:19Z) - Simultaneous Dimensionality Reduction: A Data Efficient Approach for Multimodal Representations Learning [0.0]
We explore two primary classes of approaches to dimensionality reduction (DR): Independent Dimensionality Reduction (IDR) and Simultaneous Dimensionality Reduction (SDR)
In IDR, each modality is compressed independently, striving to retain as much variation within each modality as possible.
In SDR, one simultaneously compresses the modalities to maximize the covariation between the reduced descriptions while paying less attention to how much individual variation is preserved.
arXiv Detail & Related papers (2023-10-05T04:26:24Z) - Differentially private sliced inverse regression in the federated
paradigm [3.539008590223188]
We extend Sliced inverse regression (SIR) to address the challenges of decentralized data, prioritizing privacy and communication efficiency.
Our approach, named as federated sliced inverse regression (FSIR), facilitates collaborative estimation of the sufficient dimension reduction subspace among multiple clients.
arXiv Detail & Related papers (2023-06-10T00:32:39Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Robust Locality-Aware Regression for Labeled Data Classification [5.432221650286726]
We propose a new discriminant feature extraction framework, namely Robust Locality-Aware Regression (RLAR)
In our model, we introduce a retargeted regression to perform the marginal representation learning adaptively instead of using the general average inter-class margin.
To alleviate the disturbance of outliers and prevent overfitting, we measure the regression term and locality-aware term together with the regularization term by the L2,1 norm.
arXiv Detail & Related papers (2020-06-15T11:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.