論文の概要: A Survey of Data Security: Practices from Cybersecurity and Challenges of Machine Learning
- arxiv url: http://arxiv.org/abs/2310.04513v3
- Date: Mon, 4 Dec 2023 15:22:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 03:02:24.796379
- Title: A Survey of Data Security: Practices from Cybersecurity and Challenges of Machine Learning
- Title(参考訳): データセキュリティに関する調査:サイバーセキュリティの実践と機械学習の課題
- Authors: Padmaksha Roy, Jaganmohan Chandrasekaran, Erin Lanus, Laura Freeman, Jeremy Werner,
- Abstract要約: 機械学習(ML)は、ますます重要なシステムにデプロイされている。
MLのデータ依存により、ML対応システムのトレーニングとテストに使用されるセキュアなデータが最重要となる。
データサイエンスとサイバーセキュリティのドメインは、独自のスキルと用語のセットに準拠している。
- 参考スコア(独自算出の注目度): 6.086388464254366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning (ML) is increasingly being deployed in critical systems. The data dependence of ML makes securing data used to train and test ML-enabled systems of utmost importance. While the field of cybersecurity has well-established practices for securing information, ML-enabled systems create new attack vectors. Furthermore, data science and cybersecurity domains adhere to their own set of skills and terminologies. This survey aims to present background information for experts in both domains in topics such as cryptography, access control, zero trust architectures, homomorphic encryption, differential privacy for machine learning, and federated learning to establish shared foundations and promote advancements in data security.
- Abstract(参考訳): 機械学習(ML)は、ますます重要なシステムにデプロイされている。
MLのデータ依存により、ML対応システムのトレーニングとテストに使用されるセキュアなデータが最重要となる。
サイバーセキュリティの分野では情報保護の慣行が確立しているが、ML対応システムは新たな攻撃ベクトルを作成する。
さらに、データサイエンスとサイバーセキュリティのドメインは、独自のスキルと用語のセットに準拠している。
この調査は、暗号化、アクセス制御、ゼロ信頼アーキテクチャ、同型暗号化、機械学習のための差分プライバシー、共有基盤を確立するためのフェデレーション学習といったトピックにおいて、両ドメインの専門家のバックグラウンド情報を提示し、データセキュリティの進歩を促進することを目的としている。
関連論文リスト
- Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
サイバーセキュリティ(LLM4Security)における大規模言語モデルの適用に関する文献の総合的なレビューを行う。
LLMは、脆弱性検出、マルウェア分析、ネットワーク侵入検出、フィッシング検出など、幅広いサイバーセキュリティタスクに応用されている。
第3に、細調整、転送学習、ドメイン固有の事前トレーニングなど、特定のサイバーセキュリティドメインにLLMを適用するための有望なテクニックをいくつか特定する。
論文 参考訳(メタデータ) (2024-05-08T02:09:17Z) - Threats, Attacks, and Defenses in Machine Unlearning: A Survey [14.03428437751312]
マシン・アンラーニング(MU)は、Safe AIを達成する可能性から、最近かなりの注目を集めている。
この調査は、機械学習における脅威、攻撃、防衛に関する広範な研究のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-03-20T15:40:18Z) - XFedHunter: An Explainable Federated Learning Framework for Advanced
Persistent Threat Detection in SDN [0.0]
この研究は、Software-Defined Networking (SDN)におけるAPT検出のための説明可能なフェデレート学習フレームワークであるXFedHunterを提案する。
XFedHunterでは、悪意のある事象を効果的に明らかにするために、グラフニューラルネットワーク(GNN)とディープラーニングモデルが使用される。
NF-ToN-IoTとDARPA TCE3データセットの実験結果は、我々のフレームワークがMLベースのシステムの信頼性と説明責任を高めることを示唆している。
論文 参考訳(メタデータ) (2023-09-15T15:44:09Z) - Robustness Evaluation of Deep Unsupervised Learning Algorithms for
Intrusion Detection Systems [0.0]
本稿では, 汚染データに対する侵入検出のための6つの最新のディープラーニングアルゴリズムの堅牢性を評価する。
本研究で用いた最先端のアルゴリズムは,データ汚染に敏感であり,データ摂動に対する自己防衛の重要性を明らかにしている。
論文 参考訳(メタデータ) (2022-06-25T02:28:39Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - From Distributed Machine Learning to Federated Learning: A Survey [49.7569746460225]
分散学習は、分散データとコンピューティングリソースを利用するための効率的なアプローチとして現れる。
本論文では,連合学習システムの機能構造と関連手法の分類法を提案する。
本稿では,flシステムの分散トレーニング,データ通信,セキュリティについて述べる。
論文 参考訳(メタデータ) (2021-04-29T14:15:11Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
この作業は体系的に分類され、幅広いデータセット脆弱性とエクスプロイトを議論する。
様々な毒とバックドアの脅威モデルとそれらの関係を記述することに加えて,それらの統一分類法を展開する。
論文 参考訳(メタデータ) (2020-12-18T22:38:47Z) - Confidential Machine Learning on Untrusted Platforms: A Survey [10.45742327204133]
我々は機密機械学習(CML)の暗号的アプローチに焦点を当てる。
また、ハードウェア支援の機密コンピューティング環境における摂動ベースのアプローチやCMLなどの他の方向もカバーします。
この議論は、関連する脅威モデル、セキュリティの仮定、攻撃、設計哲学、およびデータユーティリティ、コスト、機密性間の関連するトレードオフの豊富なコンテキストを考慮するための包括的な方法を取ります。
論文 参考訳(メタデータ) (2020-12-15T08:57:02Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。