Task-Generic Hierarchical Human Motion Prior using VAEs
- URL: http://arxiv.org/abs/2106.04004v1
- Date: Mon, 7 Jun 2021 23:11:42 GMT
- Title: Task-Generic Hierarchical Human Motion Prior using VAEs
- Authors: Jiaman Li, Ruben Villegas, Duygu Ceylan, Jimei Yang, Zhengfei Kuang,
Hao Li, Yajie Zhao
- Abstract summary: A deep generative model that describes human motions can benefit a wide range of fundamental computer vision and graphics tasks.
We present a method for learning complex human motions independent of specific tasks using a combined global and local latent space.
We demonstrate the effectiveness of our hierarchical motion variational autoencoder in a variety of tasks including video-based human pose estimation.
- Score: 44.356707509079044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A deep generative model that describes human motions can benefit a wide range
of fundamental computer vision and graphics tasks, such as providing robustness
to video-based human pose estimation, predicting complete body movements for
motion capture systems during occlusions, and assisting key frame animation
with plausible movements. In this paper, we present a method for learning
complex human motions independent of specific tasks using a combined global and
local latent space to facilitate coarse and fine-grained modeling.
Specifically, we propose a hierarchical motion variational autoencoder (HM-VAE)
that consists of a 2-level hierarchical latent space. While the global latent
space captures the overall global body motion, the local latent space enables
to capture the refined poses of the different body parts. We demonstrate the
effectiveness of our hierarchical motion variational autoencoder in a variety
of tasks including video-based human pose estimation, motion completion from
partial observations, and motion synthesis from sparse key-frames. Even though,
our model has not been trained for any of these tasks specifically, it provides
superior performance than task-specific alternatives. Our general-purpose human
motion prior model can fix corrupted human body animations and generate
complete movements from incomplete observations.
Related papers
- Sitcom-Crafter: A Plot-Driven Human Motion Generation System in 3D Scenes [83.55301458112672]
Sitcom-Crafter is a system for human motion generation in 3D space.
Central to the function generation modules is our novel 3D scene-aware human-human interaction module.
Augmentation modules encompass plot comprehension for command generation, motion synchronization for seamless integration of different motion types.
arXiv Detail & Related papers (2024-10-14T17:56:19Z) - FreeMotion: MoCap-Free Human Motion Synthesis with Multimodal Large Language Models [19.09048969615117]
We explore open-set human motion synthesis using natural language instructions as user control signals based on MLLMs.
Our method can achieve general human motion synthesis for many downstream tasks.
arXiv Detail & Related papers (2024-06-15T21:10:37Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
We present a universal motion representation that encompasses a comprehensive range of motor skills for physics-based humanoid control.
We first learn a motion imitator that can imitate all of human motion from a large, unstructured motion dataset.
We then create our motion representation by distilling skills directly from the imitator.
arXiv Detail & Related papers (2023-10-06T20:48:43Z) - Object Motion Guided Human Motion Synthesis [22.08240141115053]
We study the problem of full-body human motion synthesis for the manipulation of large-sized objects.
We propose Object MOtion guided human MOtion synthesis (OMOMO), a conditional diffusion framework.
We develop a novel system that captures full-body human manipulation motions by simply attaching a smartphone to the object being manipulated.
arXiv Detail & Related papers (2023-09-28T08:22:00Z) - Task-Oriented Human-Object Interactions Generation with Implicit Neural
Representations [61.659439423703155]
TOHO: Task-Oriented Human-Object Interactions Generation with Implicit Neural Representations.
Our method generates continuous motions that are parameterized only by the temporal coordinate.
This work takes a step further toward general human-scene interaction simulation.
arXiv Detail & Related papers (2023-03-23T09:31:56Z) - Human MotionFormer: Transferring Human Motions with Vision Transformers [73.48118882676276]
Human motion transfer aims to transfer motions from a target dynamic person to a source static one for motion synthesis.
We propose Human MotionFormer, a hierarchical ViT framework that leverages global and local perceptions to capture large and subtle motion matching.
Experiments show that our Human MotionFormer sets the new state-of-the-art performance both qualitatively and quantitatively.
arXiv Detail & Related papers (2023-02-22T11:42:44Z) - MotionBERT: A Unified Perspective on Learning Human Motion
Representations [46.67364057245364]
We present a unified perspective on tackling various human-centric video tasks by learning human motion representations from large-scale and heterogeneous data resources.
We propose a pretraining stage in which a motion encoder is trained to recover the underlying 3D motion from noisy partial 2D observations.
We implement motion encoder with a Dual-stream Spatio-temporal Transformer (DSTformer) neural network.
arXiv Detail & Related papers (2022-10-12T19:46:25Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
We present MoDi, an unconditional generative model that synthesizes diverse motions.
Our model is trained in a completely unsupervised setting from a diverse, unstructured and unlabeled motion dataset.
We show that despite the lack of any structure in the dataset, the latent space can be semantically clustered.
arXiv Detail & Related papers (2022-06-16T09:06:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.