A Neuro-Symbolic Framework for Answering Graph Pattern Queries in Knowledge Graphs
- URL: http://arxiv.org/abs/2310.04598v2
- Date: Wed, 5 Jun 2024 15:56:54 GMT
- Title: A Neuro-Symbolic Framework for Answering Graph Pattern Queries in Knowledge Graphs
- Authors: Tamara Cucumides, Daniel Daza, Pablo Barceló, Michael Cochez, Floris Geerts, Juan L Reutter, Miguel Romero,
- Abstract summary: Most neuro-symbolic query processors are constrained to tree-like graph pattern queries.
We introduce a framework for answering arbitrary graph pattern queries over incomplete knowledge graphs.
- Score: 17.93455358818447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The challenge of answering graph queries over incomplete knowledge graphs is gaining significant attention in the machine learning community. Neuro-symbolic models have emerged as a promising approach, combining good performance with high interpretability. These models utilize trained architectures to execute atomic queries and integrate modules that mimic symbolic query operators. However, most neuro-symbolic query processors are constrained to tree-like graph pattern queries. These queries admit a bottom-up execution with constant values or anchors at the leaves and the target variable at the root. While expressive, tree-like queries fail to capture critical properties in knowledge graphs, such as the existence of multiple edges between entities or the presence of triangles. We introduce a framework for answering arbitrary graph pattern queries over incomplete knowledge graphs, encompassing both cyclic queries and tree-like queries with existentially quantified leaves. These classes of queries are vital for practical applications but are beyond the scope of most current neuro-symbolic models. Our approach employs an approximation scheme that facilitates acyclic traversals for cyclic patterns, thereby embedding additional symbolic bias into the query execution process. Our experimental evaluation demonstrates that our framework performs competitively on three datasets, effectively handling cyclic queries through our approximation strategy. Additionally, it maintains the performance of existing neuro-symbolic models on anchored tree-like queries and extends their capabilities to queries with existentially quantified variables.
Related papers
- One Model, Any Conjunctive Query: Graph Neural Networks for Answering Complex Queries over Knowledge Graphs [7.34044245579928]
We propose AnyCQ, a graph neural network model that can classify answers to any conjunctive query on any knowledge graph.
We show that AnyCQ can generalize to large queries of arbitrary structure, reliably classifying and retrieving answers to samples where existing approaches fail.
arXiv Detail & Related papers (2024-09-21T00:30:44Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
We consider the task of conversational semantic parsing over general purpose knowledge graphs (KGs) with millions of entities, and thousands of relation-types.
We focus on models which are capable of interactively mapping user utterances into executable logical forms.
arXiv Detail & Related papers (2023-05-04T16:04:41Z) - Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
Databases [63.96793270418793]
Complex logical query answering (CLQA) is a recently emerged task of graph machine learning.
We introduce the concept of Neural Graph Database (NGDBs)
NGDB consists of a Neural Graph Storage and a Neural Graph Engine.
arXiv Detail & Related papers (2023-03-26T04:03:37Z) - Modeling Relational Patterns for Logical Query Answering over Knowledge Graphs [29.47155614953955]
We develop a novel query embedding method, RoConE, that defines query regions as geometric cones and algebraic query operators by rotations in complex space.
Our experimental results on several benchmark datasets confirm the advantage of relational patterns for enhancing logical query answering task.
arXiv Detail & Related papers (2023-03-21T13:59:15Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - Inductive Logical Query Answering in Knowledge Graphs [30.220508024471595]
We study the inductive query answering task where inference is performed on a graph containing new entities with queries over both seen and unseen entities.
We devise two mechanisms leveraging inductive node and relational structure representations powered by graph neural networks (GNNs)
Experimentally, we show that inductive models are able to perform logical reasoning at inference time over unseen nodes generalizing to graphs up to 500% larger than training ones.
arXiv Detail & Related papers (2022-10-13T03:53:34Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms.
The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
arXiv Detail & Related papers (2022-02-22T01:34:35Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Message Passing Query Embedding [4.035753155957698]
We propose a graph neural network to encode a graph representation of a query.
We show that the model learns entity embeddings that capture the notion of entity type without explicit supervision.
arXiv Detail & Related papers (2020-02-06T17:40:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.