EdgeFD: An Edge-Friendly Drift-Aware Fault Diagnosis System for
Industrial IoT
- URL: http://arxiv.org/abs/2310.04704v1
- Date: Sat, 7 Oct 2023 06:48:07 GMT
- Title: EdgeFD: An Edge-Friendly Drift-Aware Fault Diagnosis System for
Industrial IoT
- Authors: Chen Jiao, Mao Fengjian, Lv Zuohong, Tang Jianhua
- Abstract summary: We propose the Drift-Aware Weight Consolidation (DAWC) to mitigate the challenges posed by frequent data drift in the industrial Internet of Things (IIoT)
DAWC efficiently manages multiple data drift scenarios, minimizing the need for constant model fine-tuning on edge devices.
We have also developed a comprehensive diagnosis and visualization platform.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent transfer learning (TL) approaches in industrial intelligent fault
diagnosis (FD) mostly follow the "pre-train and fine-tuning" paradigm to
address data drift, which emerges from variable working conditions. However, we
find that this approach is prone to the phenomenon known as catastrophic
forgetting. Furthermore, performing frequent models fine-tuning on the
resource-constrained edge nodes can be computationally expensive and
unnecessary, given the excellent transferability demonstrated by existing
models. In this work, we propose the Drift-Aware Weight Consolidation (DAWC), a
method optimized for edge deployments, mitigating the challenges posed by
frequent data drift in the industrial Internet of Things (IIoT). DAWC
efficiently manages multiple data drift scenarios, minimizing the need for
constant model fine-tuning on edge devices, thereby conserving computational
resources. By detecting drift using classifier confidence and estimating
parameter importance with the Fisher Information Matrix, a tool that measures
parameter sensitivity in probabilistic models, we introduce a drift detection
module and a continual learning module to gradually equip the FD model with
powerful generalization capabilities. Experimental results demonstrate that our
proposed DAWC achieves superior performance compared to existing techniques
while also ensuring compatibility with edge computing constraints.
Additionally, we have developed a comprehensive diagnosis and visualization
platform.
Related papers
- A Scalable Approach to Covariate and Concept Drift Management via Adaptive Data Segmentation [0.562479170374811]
In many real-world applications, continuous machine learning (ML) systems are crucial but prone to data drift.
Traditional drift adaptation methods typically update models using ensemble techniques, often discarding drifted historical data.
We contend that explicitly incorporating drifted data into the model training process significantly enhances model accuracy and robustness.
arXiv Detail & Related papers (2024-11-23T17:35:23Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - SRTFD: Scalable Real-Time Fault Diagnosis through Online Continual Learning [8.016378373626084]
Modern industrial environments demand FD methods that can handle new fault types, dynamic conditions, large-scale data, and provide real-time responses with minimal prior information.
We propose SRTFD, a scalable real-time fault diagnosis framework that enhances online continual learning (OCL) with three critical methods.
Experiments on a real-world dataset and two public simulated datasets demonstrate SRTFD's effectiveness and potential for providing advanced, scalable, and precise fault diagnosis in modern industrial systems.
arXiv Detail & Related papers (2024-08-11T03:26:22Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines.
We use a combination of pre-processing techniques and machine learning (ML) models with a low computational cost.
arXiv Detail & Related papers (2023-10-15T18:43:45Z) - Uncovering Drift in Textual Data: An Unsupervised Method for Detecting
and Mitigating Drift in Machine Learning Models [9.035254826664273]
Drift in machine learning refers to the phenomenon where the statistical properties of data or context, in which the model operates, change over time leading to a decrease in its performance.
In our proposed unsupervised drift detection method, we follow a two step process. Our first step involves encoding a sample of production data as the target distribution, and the model training data as the reference distribution.
Our method also identifies the subset of production data that is the root cause of the drift.
The models retrained using these identified high drift samples show improved performance on online customer experience quality metrics.
arXiv Detail & Related papers (2023-09-07T16:45:42Z) - FLARE: Detection and Mitigation of Concept Drift for Federated Learning
based IoT Deployments [2.7776688429637466]
FLARE is a lightweight dual-scheduler FL framework that conditionally transfers training data and deploys models between edge and sensor endpoints.
We show that FLARE can significantly reduce the amount of data exchanged between edge and sensor nodes compared to fixed-interval scheduling methods.
It can successfully detect concept drift reactively with at least a 16x reduction in latency.
arXiv Detail & Related papers (2023-05-15T10:09:07Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.