datadriftR: An R Package for Concept Drift Detection in Predictive Models
- URL: http://arxiv.org/abs/2412.11308v1
- Date: Sun, 15 Dec 2024 20:59:49 GMT
- Title: datadriftR: An R Package for Concept Drift Detection in Predictive Models
- Authors: Ugur Dar, Mustafa Cavus,
- Abstract summary: This paper introduces drifter, an R package designed to detect concept drift.
It proposes a novel method called Profile Drift Detection (PDD) that enables both drift detection and an enhanced understanding of the cause behind the drift.
- Score: 0.0
- License:
- Abstract: Predictive models often face performance degradation due to evolving data distributions, a phenomenon known as data drift. Among its forms, concept drift, where the relationship between explanatory variables and the response variable changes, is particularly challenging to detect and adapt to. Traditional drift detection methods often rely on metrics such as accuracy or variable distributions, which may fail to capture subtle but significant conceptual changes. This paper introduces drifter, an R package designed to detect concept drift, and proposes a novel method called Profile Drift Detection (PDD) that enables both drift detection and an enhanced understanding of the cause behind the drift by leveraging an explainable AI tool - Partial Dependence Profiles (PDPs). The PDD method, central to the package, quantifies changes in PDPs through novel metrics, ensuring sensitivity to shifts in the data stream without excessive computational costs. This approach aligns with MLOps practices, emphasizing model monitoring and adaptive retraining in dynamic environments. The experiments across synthetic and real-world datasets demonstrate that PDD outperforms existing methods by maintaining high accuracy while effectively balancing sensitivity and stability. The results highlight its capability to adaptively retrain models in dynamic environments, making it a robust tool for real-time applications. The paper concludes by discussing the advantages, limitations, and future extensions of the package for broader use cases.
Related papers
- Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior.
We revisit SR from a novel information-theoretic perspective and find that sequential modeling methods fail to adequately capture randomness and unpredictability of user behavior.
Inspired by fuzzy information processing theory, this paper introduces the fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests.
arXiv Detail & Related papers (2024-10-31T14:52:01Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Thwarting Cybersecurity Attacks with Explainable Concept Drift [10.517955982799553]
Cyber-security attacks pose a significant threat to the operation of autonomous systems.
This paper proposes a Feature Drift Explanation (FDE) module to identify the drifting features.
FDE successfully identifies 85.77 % of drifting features and showcases its utility in the DL adaptation method.
arXiv Detail & Related papers (2024-03-18T20:20:00Z) - EdgeFD: An Edge-Friendly Drift-Aware Fault Diagnosis System for
Industrial IoT [0.0]
We propose the Drift-Aware Weight Consolidation (DAWC) to mitigate the challenges posed by frequent data drift in the industrial Internet of Things (IIoT)
DAWC efficiently manages multiple data drift scenarios, minimizing the need for constant model fine-tuning on edge devices.
We have also developed a comprehensive diagnosis and visualization platform.
arXiv Detail & Related papers (2023-10-07T06:48:07Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
We present a textbfForgery-aware textbfAdaptive textbfVision textbfTransformer (FA-ViT) under the adaptive learning paradigm.
FA-ViT achieves 93.83% and 78.32% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation.
arXiv Detail & Related papers (2023-09-20T06:51:11Z) - Uncovering Drift in Textual Data: An Unsupervised Method for Detecting
and Mitigating Drift in Machine Learning Models [9.035254826664273]
Drift in machine learning refers to the phenomenon where the statistical properties of data or context, in which the model operates, change over time leading to a decrease in its performance.
In our proposed unsupervised drift detection method, we follow a two step process. Our first step involves encoding a sample of production data as the target distribution, and the model training data as the reference distribution.
Our method also identifies the subset of production data that is the root cause of the drift.
The models retrained using these identified high drift samples show improved performance on online customer experience quality metrics.
arXiv Detail & Related papers (2023-09-07T16:45:42Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
Remote Sensing Change Detection (RS-CD) aims to detect relevant changes from Multi-Temporal Remote Sensing Images (MT-RSIs)
The performance of existing RS-CD methods is attributed to training on large annotated datasets.
This paper proposes an unsupervised CD method based on deep metric learning that can deal with both of these issues.
arXiv Detail & Related papers (2023-03-16T17:52:45Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
Uncertainty Drift Detection (UDD) is able to detect drifts without access to true labels.
In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model.
We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
arXiv Detail & Related papers (2021-07-05T08:56:36Z) - Learning Parameter Distributions to Detect Concept Drift in Data Streams [13.20231558027132]
We propose a novel framework for the detection of real concept drift, called ERICS.
By treating the parameters of a predictive model as random variables, we show that concept drift corresponds to a change in the distribution of optimal parameters.
ERICS is also capable to detect concept drift at the input level, which is a significant advantage over existing approaches.
arXiv Detail & Related papers (2020-10-19T11:19:16Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.