Task Aware Modulation using Representation Learning: An Approach for Few
Shot Learning in Heterogeneous Systems
- URL: http://arxiv.org/abs/2310.04727v1
- Date: Sat, 7 Oct 2023 07:55:22 GMT
- Title: Task Aware Modulation using Representation Learning: An Approach for Few
Shot Learning in Heterogeneous Systems
- Authors: Arvind Renganathan, Rahul Ghosh, Ankush Khandelwal and Vipin Kumar
- Abstract summary: TAM-RL is a framework that enhances personalized predictions in few-shot settings for heterogeneous systems.
We show that TAM-RL can significantly outperform existing baseline approaches such as MAML and multi-modal MAML.
We show that TAM-RL significantly improves predictive performance for cases where it is possible to learn distinct representations for different tasks.
- Score: 16.524898421921108
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a Task-aware modulation using Representation Learning (TAM-RL)
framework that enhances personalized predictions in few-shot settings for
heterogeneous systems when individual task characteristics are not known.
TAM-RL extracts embeddings representing the actual inherent characteristics of
these entities and uses these characteristics to personalize the predictions
for each entity/task. Using real-world hydrological and flux tower benchmark
data sets, we show that TAM-RL can significantly outperform existing baseline
approaches such as MAML and multi-modal MAML (MMAML) while being much faster
and simpler to train due to less complexity. Specifically, TAM-RL eliminates
the need for sensitive hyper-parameters like inner loop steps and inner loop
learning rate, which are crucial for model convergence in MAML, MMAML. We
further present an empirical evaluation via synthetic data to explore the
impact of heterogeneity amongst the entities on the relative performance of
MAML, MMAML, and TAM-RL. We show that TAM-RL significantly improves predictive
performance for cases where it is possible to learn distinct representations
for different tasks.
Related papers
- Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RL is a novel model-based Meta-Reinforcement Learning (Meta-RL) algorithm designed to efficiently adapt control policies to changing dynamics.
Existing Meta-RL methods require abundant meta-learning data, limiting their applicability in settings such as robotics.
Our experiment results demonstrate that PACOH-RL outperforms model-based RL and model-based Meta-RL baselines in adapting to new dynamic conditions.
arXiv Detail & Related papers (2023-11-13T18:51:57Z) - Learning to Modulate pre-trained Models in RL [22.812215561012874]
Fine-tuning a pre-trained model often suffers from catastrophic forgetting.
Our study shows that with most fine-tuning approaches, the performance on pre-training tasks deteriorates significantly.
We propose a novel method, Learning-to-Modulate (L2M), that avoids the degradation of learned skills by modulating the information flow of the frozen pre-trained model.
arXiv Detail & Related papers (2023-06-26T17:53:05Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
arXiv Detail & Related papers (2023-05-22T21:39:38Z) - Multi-Augmentation for Efficient Visual Representation Learning for
Self-supervised Pre-training [1.3733988835863333]
We propose Multi-Augmentations for Self-Supervised Learning (MA-SSRL), which fully searched for various augmentation policies to build the entire pipeline.
MA-SSRL successfully learns the invariant feature representation and presents an efficient, effective, and adaptable data augmentation pipeline for self-supervised pre-training.
arXiv Detail & Related papers (2022-05-24T04:18:39Z) - An Optimization-Based Meta-Learning Model for MRI Reconstruction with
Diverse Dataset [4.9259403018534496]
We develop a generalizable MRI reconstruction model in the meta-learning framework.
The proposed network learns regularization function in a learner adaptional model.
We test the result of quick training on the unseen tasks after meta-training and in the saving half of the time.
arXiv Detail & Related papers (2021-10-02T03:21:52Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
This work provides positive evidence using a broad meta-learning framework.
residual connections act as a meta-learning adaptation mechanism.
We show that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining.
arXiv Detail & Related papers (2020-02-07T16:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.